Dynamic conformational ensembles: challenges of multiple time scales and multidomain proteins

A previous application: small canonical serine protease inhibitors

- Standard mechanism, canonical inhibitors comprise multiple, unrelated protein families
- Substrate-like interaction with the target enzyme
- Common structural motif: protease binding loop
- → Conventional view of efficiency [1]:
- Rigidity of the binding loop is key
- No conformational change upon enzyme binding
- Based primarily on X-ray structures of free and
- complexed inhibitors
- NMR studies consistently reveal increased
- flexibility in the protase binding loop (ps-ns time scale) → SGCI & SGTI: small inhibitors from desert locust with
- high efficiency and dynamic overall structure
 - → At the same time, they are more realistic than those calculated by conventional methods

- Enzyme-bound conformers are present in the solution state
- → The conformational transitions are much faster (ps-ns scale) than the association with the enzyme (ms time scale)
- → No energetic cost of protease binding related to conformational changes in 'nanosecond-timescale conformer selection' \rightarrow This is in agreement with the expectations of the rigid binding loop model [2]

The CoNSEnsX web server to analyze dynamic conformational ensembles

References

[1] Berg, J.M., Tymocko, J.-L. and Stryer, L. (2006) Biochemistry, sixth ed, WH Freeman, New York. [2] Gáspári, Z., Várnai, P., Szappanos, B. and Perczel, A. (2010) Reconciling the lock-and-key and dynamic views of canonical serine protease inhibitor action. FEBS Lett. 584, 203-206. [3] Ángyán, A.F., Szappanos, B. Perczel, A., Gáspári, Z. (2010) CoNSEnsX: an ensemble view of protein strucures and NMR-derived experimental data. BMC Struct. Biol. 10:39. [4] Neal, S., Nip, A.M., Zhang, N. and Wishart, D.S. (2003) Rapid and accurate calculation of protein ¹H, ¹³C and ¹⁵N chemical shifts. J. Biomol. NMR 26, 215-240. [5] Zweckstetter, M. and Bax, A. (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J Am Chem Soc 122:3791-3792.

RMSD embles chain

Dynamic structural ensembles of the inhibitors are more diverse than SCR (single-conformer refinement) ones

RMSD

PCA

Š

RMSD

[6] Best, R.B. and Vendruscolo, M (2004) Determination of protein structures consistent with order parameters. J. Am. Chem. Soc. 126, 8090-8091. [7] Richter, B., Gsponer, J., Várnai, P., Salvatella, X. and Vendruscolo, M. (2007) The MUMO (minimal under-restraining minimal over-restraining) method for the determination of native state ensembles of proteins. J. Biomol. NMR 37, 117–135. [8] Bertini, I. et al. (2008) Evidence of reciprocal reorientation of the catalytic and hemopexin-like domains of full-length MMP12. J. Am. Chem. Soc. 130, 7011-7021. [9] Lange O. et al. (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320, 1471-1475.

Zoltán Gáspári, Nóra Epresi

Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary

http://itk.ppke.hu/~gaszo | gaspari.zoltan@itk.ppke.hu

Details of the implementation

• In-house extensions for GROMACS 3.3.1 & 4.5.5, available for download on our home page • Usage conforms to GROMACS conventions, restraints can be specified in the topology, other parameters in the run control file • Order parameters (S²) implemented as described in [6] and with fitting to reference group at each calculation step • Modification #1: (only in 3.3.1 yet): an induvidual fit group can be defined for not fully rigid molecules • Modification #2: can be defined for sub-ensembles for the generation of ensembles reflecting motions on multiple time scales • NOE: pairwise averaging over replicas is implemented (similarly to the MUMO approach [7])

Exploratory calculations

- → The catalytic (red) and hemopexin-like (blue) domains of MMP12 show largely independent reorientation [7]
- amber99sb FF, TIP3P water) for both domains separately
- corresponding to the two domains

Challenges:

- Get better agreent for the flexible loops
- relaxation data for such a protein?

Ubiquitin displays motions on the submicrosecond time scale that are not present on the ps-ns time scale [9] \rightarrow Using experimental S² values and back-calculated RDCs from the EROS ensemble (PDB ID 3K39) → Restraining in GROMACS 4.5.5. (1.2 ns, amber99sb FF, 3X4 replicas)

0.9			1				
0.8			1 0				
0.7	- 12			- Mr	V	A >	5
0.6		W	Y				
0.5							
0.4							
0.3							
0.2				c			
0.2					pp0		
0.1				po po po	pp1		
0				- PC	ali —		
0	0	10	20	30	40	50	60

	,	N II C2	NUDDO					
	N-H S ²				N-H RDC			
	Pearson	Q (%)	RMSD	Pearson	Q (%)	RMS		
рор0	0.936	10.81	0.08	0.905	51.06	2.66		
pop1	0.927	12.15	0.09	0.979	45.93	2.12		
pop2	0.896	12.94	0.09	0.972	39.53	1.95		
all	0.917	14.93	0.10	0.975	41.87	2.01		

Challenges:

• Find the optimal combination of relative restraint weights as well as the number of replicas and sub-ensembles Find the motional modes that discriminate the motions on different time scales Try to understand the connections between motions by detailed analyss of residue-residue interactions

Acknowledgements

Hungarian Scientific Research Fund (OTKA 104198), TÁMOP-4.2.1.B-11/2/KMR-2011-0002

 \rightarrow Using synthetic S² values back-calculated from a 5 ns MD run (GROMACS 4.5.5, → Restraining in GROMACS 3.3.1. (0.3 ns, oplsaa FF, 4 replicas) with two fit groups

 \rightarrow Can we obtain meaningful S² values from experimental

Ca-C RDC SD Pearson Q (%) RMSD 0.872 68.8 0.74 0.957 61.76 0.60 0.960 49.74 0.53 0.944 59.07 0.60