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Abstract

Bending is a local conformational micropolymorphism of DNA in which the original B-DNA structure is only
distorted but not extensively modified. Bending can be predicted by simple static geometry models as well as
by a recently developed elastic model that incorporate sequence dependent anisotropic bendability (SDAB). The
SDAB model qualitatively explains phenomena including affinity of protein binding, kinking, as well as sequence-
dependent vibrational properties of DNA. The vibrational properties of DNA segments can be studied by finite
element analysis of a model subjected to an initial bending moment. The frequency spectrum is obtained by
applying Fourier analysis to the displacement values in the time domain. This analysis shows that the spectrum of
the bending vibrations quite sensitively depends on the sequence, for example the spectrum of a curved sequence
is characteristically different from the spectrum of straight sequence motifs of identical basepair composition.
Curvature distributions are genome-specific, and pronounced differences are found between protein-coding and
regulatory regions, respectively, that is, sites of extreme curvature and/or bendability are less frequent in protein-
coding regions. A WWW server is set up for the prediction of curvature and generation of 3D models from DNA
sequences (http://www.icgeb.trieste.it/dna).

Introduction

The idea of local structural polymorphism in DNA
has profoundly influenced the thinking of biologists
in recent years. DNA is no longer considered as a
featureless double helix but rather as a series of in-
dividual domains differing in flexibility and curvature.
Local structural polymorphism is expected to contrib-
ute to the specificity of various biological events as
gene regulation, packaging, for example, through reg-
ulating the affinity of protein binding [1]. In contrast
to traditional structural polymorphism (e.g. B, A or
Z structures), here we deal with a localised micro-
polymorphism in which the original B-DNA structure
is only distorted but not extensively modified. The
DNA segments involved in protein-induced and in-
herent DNA-bending are 10–50 base pairs in length
[2] that is they are longer than what can be easily
handled by atomic resolution molecular modelling or

quantum mechanical approaches. Traditional elastic
models of DNA, that represent DNA as an ideally
elastic, homogeneous cylindrical rod, were used to
model macroscopic behaviour of long DNA segments,
such as supercoiling [3, 4]. However, local DNA
conformations and recognition by DNA-binding pro-
teins are clearly sequence-dependent, so conventional
elastic rod models of DNA, which do not explicitly
represent the dependence of the elasticity on the base
sequence, cannot say much about them. Here, we
attempt to briefly review advantages and limitations
of the rod-models of DNA with particular regard to
elastic modelling of local bending phenomena.

Static geometry models

The simplest form of DNA models are the so-called
Rod models that picture DNA as a cylindrical rod of
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Figure 1. (A) Curvature of an elastic rod. (B) A segmented rod model. Each element corresponds to one base pair and may have different static
deflection angles (roll, tilt twist) as well as different bending, torsional and stretching rigidity values. (C) The sequence-dependent anisotropic
bendability model of DNA. The arrows are proportional to the flexibility in a given direction(+x,−x,+y,−y). In the SDAB model, one
direction (that of the major groove) is more flexible, the other three are more rigid.

constant diameter. The shape in this case is the path
or trajectory of the longitudinal axis, which can be
either straight or curved (Figure 1A). The common
philosophy of rod models are to divide the rod into
short cylindrical segments (e.g. of the size of a base
pair, Figure 1B) and then to compute some rod para-
meter based on the segment parameters that have to
be a priori known. Dinucleotide models define the
base pair-size unit as one between two adjacent base
pairs, which results in 16 different base pairs, or 10,
if we allow strand symmetry (i.e. AA=TT). Trinuc-
leotide models define the unit around the base pair in
the middle of a given trinucleotide. This amounts to
64 or 32 different units, again depending on strand
symmetry.

Static models are rigid rod models that only con-
sider the static geometry of a constituting segment.
Curvature in B-DNA was originally believed to be
an attribute of An(n = 4–6) tracts repeated in phase
with DNA’s helical repeat. Two static models have
been proposed initially to explain the phenomenon. In
the nearest neighbour model, the axial deflections of
successive AA/TT dinucleotides add up to produce a
curve [5]. In the so-called junction model, curvature
is produced as the modified B-DNA structure of An
tracts joins with adjacent B-DNA [6]. More recently it
became clear that in addition to the An tracts, DNA
curvature involves additional sequence elements [7,
8], and more sophisticated models were proposed
which included wedge angles for all 16 dinucleotides
[9, 10].

Current static models consider dinucleotide geo-
metries derived from direct measurements such as

X-ray crystallography [11, 12] and NMR [13, 14],
from statistics of nucleosome binding data [7, 15] or
from gel electrophoretic analysis of concatenated syn-
thetic oligonucleotide repeats [9, 10] . The parameters
explicitly considered are Roll, Tilt and Twist angles,
and all other parameters are considered equal to that
of B-DNA (the diameter of the rod plays no role in
this calculation). Given the geometry of the segments
one can calculate the trajectory of DNA by adding the
distortions of the successive segments. This exercise
is only seemingly simple, because addition of rotation
operations like roll, tilt and twist are not commutative,
so the results in principle depend on the serial order
of the operations [16]. The resulting error is negli-
gible for short DNA segments and for small angles
(and generally speaking, roll and tilt angles are small).
The calculation will however give large uncertainties
for long segments or for large distortions. There are
a number of programs available that can calculate an
approximate DNA trajectory starting from a DNA se-
quence [10, 12, 17–19]. Table 1 shows that the current
dinucleotide models give good qualitative correlations
with the known experimental values, that is curved
and straight motifs can be distinguished even though
all models mispredict some of the motifs. It has to be
mentioned that gel mobility anomaly of DNA that is
used to validate the models is itself strongly depend-
ent on environmental factors such as metal salts and
temperature, so our knowledge on straight and curved
motifs is qualitative rather than quantitative.
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Simple elastic models

Elastic bodies are those that regain their original shape
after the stress is removed and in which the displace-
ment (distortion) is proportional to the force applied.
Single-molecule experiments show that these condi-
tions are in fact met for small distortions of DNA
molecules. If a DNA rod is ideally elastic one can
compute the energy necessary for bending, stretching
or torsional deformation [20]. For example, the en-
ergy required to bend the rod of lengthL to a given
curvature can be calculated as

1G = 1
2 EILα

2. (1)

Hereα is the curvature as defined in Figure 1A andI
is the moment of inertia that, for a cylindrical rod of
r radius is given asπr4/4. E is the Young’s modulus.
Based on a variety of physico-chemical measurements
and direct molecular stretching studies, the Young’s
modulus of average DNA is about 3.4× 108 N/m2, a
value close to that of polypropylene or phenol resins.

By ‘simple elastic models’ we mean those that
consider DNA as an originally straight cylindrical rod
with onehomogeneous isotropic elasticityparameter
(for extensive reviews see [2, 4, 21]). This means
on the one hand that the model is not sequence-
dependent, that is all segments are equal, and on the
other hand, the model is equally bendable (deform-
able) in all directions. The phenomena that can be
described with such a simplified elastic model include
the gross shape changes of DNA like supercoiling, re-
sponse of plasmids to stress, etc. The nature of the
answer is qualitative, for example one can state that
the shape of a plasmid-like elastic ring model adopts,
in response to torsional stress, shapes that are reminis-
cent of the shapes observed for supercoiled plasmids.
This fact shows that some properties of DNA are in
fact reminiscent of those of rubber strings, that is, de-
pend mostly on properties that are common to simple
mechanical systems. The underlying, very complex
mathematics can be performed byfinite element ana-
lysis, a technique routinely used for the analysis of
stresses and displacements in engineering [22]. This
technique has been applied with success for small
DNA displacements [23, 24]. Even though simple
elastic models do not contain local (i.e. sequence-
dependent) information, they allow on the other hand
to demonstrate how local structures might act on the
elastic behaviour of the entire molecule. For example,
incorporating a fixed curve into a DNA model will in-
fluence the gross shape of plasmids [25] and will bring

distant sites into each other’s vicinity [26]. One can
subjectively conclude that the isotropic elastic models
can, efficiently model an impressive range of phenom-
ena connected with the propagation of stress along the
molecule.

SDAB: A sequence dependent anisotropic model
of DNA bendability

For the modelling of local phenomena sequence de-
pendence has to be incorporated into the elastic mod-
els. It is also known that bending is anisotropic [27,
28], that is DNA bends much more easily towards the
major groove than in any other direction, moreover,
bending in the tilt direction is not favourable in ener-
getic terms (for a review see [2]). We have developed
anisotropic bendability parameters using the enzyme
DNaseI [29]. This enzyme bends DNA towards the
major groove and binds virtually to all DNA sites
without pronounced sequence specificity. DNaseI cut-
ting rates can thus be used as an estimate of DNA
bendability, which in turn can be scaled to an ap-
proximate DNA rigidity scale [30]. The result is a
simplified segmented rod model, shown in Figure 1B.
In this sequence dependent anisotropic bendability
(SDAB), each disk corresponds to one base pair and
the arrow indicates the direction of facilitated flexibil-
ity (i.e. that of the major groove). In principle, such
an anisotropic bendability model can have different
bending flexibility in all directions. As a simplifica-
tion, we take bendability towards the major groove as
the principal parameter, and consider DNA 10-times
stiffer in all other directions (see sketch in Figure 1C).
The model does not include static deflection compon-
ents, that is similar to isotropic models, it considers
DNA as an originally straight rod. Neither does the
model incorporate torsional flexibility. In other terms,
it is a stripped down model that is designed to re-
flect one aspect: local bending phenomena. In contrast
to the isotropic elastic models, the SDAB model is
non-linear in terms of displacement response. The
non-linearity of the SDAB model is due to two factors:
(i) Material non-linearity is the non-linear bending
characteristics of each base pair, that we term bending
anisotropy; (ii) Geometric non-linearity occurs in the
case of non-negligible displacements. Finite element
analysis is very appropriate to study such non-linear
problems.

The SDAB model pictures DNA as an anisotropic-
ally bendable rod whose bendability is deduced from
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DNaseI experiments. However, the concept bend-
ability was used also previously, by Travers and
co-workers who determined the frequency of trinuc-
leotides on the inside and outside faces of DNA bent
around the nucleosome particle. These frequency data
were then considered as a measure of bendability
(without an explicit model similar to the one outlined
here). The ranking of trinucleotides is however slightly
different according to the DNaseI and nucleosome
scales, respectively.

The first attempt to incorporate the nucleosome
frequency data into a physical model was that of
Goodsell and Dickerson who devised a static rod
model in which the roll angles were derived from re-
scaled nucleosome frequency data. This model was
quite efficient in predicting, for example GC-type
curvature, and Goodsell and Dickerson designed a
simple and fast algorithm, BEND, for the prediction of
curvature. This gave us the idea to use the DNaseI data
in an analogous manner, using the BEND algorithm.
In the following sections we apply the SDAB model
first to three problems: (i) Estimation of bending en-
ergies and their correlation with observable quantities
(sequence-dependent curvature, protein–DNA binding
free energy). (ii) Modelling of vibrational phenomena
and finally (iii) Prediction of curvature from sequence.

SDAB: Calculation of bending energy

Modelling of minicircles of curved and straight DNA
[31]

A simple experiment can show the macroscopic an-
isotropy of the SDAB model (Figure 2). A rod model
is bent to the same extent into various directions as
shown in the inset, and the bending energy is determ-
ined by finite element methods and plotted against the
direction of bending (angleβ). Sequences that are
repeats of curved DNA motifs, in fact, will have a
rotational preference, that is there will be one stable
energy minimum. This means that such a rod-model
has a preferred direction of bending, so as a result of
thermal fluctuations it will preferentially bend into one
direction. In other terms, the physically measurable
average conformation of such a model will be curved.
The straight motifs, on the other hand, have either
no minima or have two minima in opposite angular
directions.

Another consequence of the minimum energy
found in the circles is that, in the minimum energy

conformation of helically phased repeats, certain mo-
tifs will face inward and the others outward. For
example, in repeats of AAAAGGGCCC, the major
groove of the GGGCCC motif faces inwards and the
major groove of AAAAA are on the outer side of the
circle, as found, for example in nucleosomes. The roll
values at the central GC are the highest while there are
slight negative rolls in the AAAAA tract Figure 2B. As
the roll/twist profile of the lowest energy conformation
illustrates, the shape of the circle is reminiscent of a
polygon – in fact quite similar to those recently ob-
tained for the same molecule using AFM microscopy
[32]. This means that the lowest energy conformation
has slight kinks, which is reminiscent of the mini-kink
model postulated by Zhurkin and co-workers [28]. The
high-energy conformers on the contrary, have smaller
kinks (Figure 2C).

Protein/DNA binding: DNA rigidity versus complex
stability [33]

Repressor proteins bind to short DNA motifs with high
specificity and the DNA is often bent in the result-
ing protein/DNA complex since bending is induced by
the binding of the protein. We can consider a simple
model (Figure 3A) in which Cro first binds to the oli-
gonucleotide in a non-specific manner and reduces the
free movement (thermal fluctuations) of DNA, which
results in an entropy loss. Since the elastic entropy
can be calculated from the〈θ2〉1/2 root mean square
fluctuations of the model, the entropy change can be
calculated as

1S = nR ln

[
〈θ2

bound〉1/2
〈θ2

free〉1/2
]
= nR ln

[
Efree

Ebound

]
, (2)

whereEfree is the average Young’s modulus of the
segment,n is the number of degrees of freedom and
Ebound is the Young’s modulus of the bound (quasi
immobilised) DNA. SinceEfree is smaller than Ebound,
this equation shows an adverse relationship. In the
second step, the cognate will bend to a curvature
of 78.5 degrees found in the crystal structure of the
Cro/DNA complex. This second step will take place
only for cognate DNA. Takeda and co-workers have
measured a set of free energy data for cognate and
non-cognate DNA that showed a puzzling diversity of
values. If we now calculate the free energy values ac-
cording to the simple model outlined here (Figure 3A)
the cognate and non-cognate molecules will clearly
separate into two groups, that in turn clearly follow
the tendencies predicted by Equation 1 and 2. Namely,
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Figure 2. Testing bending anisotropy in DNA by finite element methods30. A DNA model was built (as outlined in Figure 1C) from the
repeat motifs shown. The models were bent to a given curvature in various directions [angleβ in A] and the bending energy of the model was
calculated for each direction by finite-element methods. Curved motifs (e.g. motif 1) exhibit a single energy minimum, which corresponds to
a bending preference in one direction. Straight motifs have either no minimum (motif 2) or minima in two opposite directions (motif 3). The
calculations were carried out using the Cosmos/M program (release 1.75A); the curvature value was uniformly 3.43◦ per base pair, and the
energy was normalised to one base-pair unit, for better comparison [31].

cognate (operator) and non-cognate (non-operator)
DNA follow two adverse, quasi-linear relationships.
In the operator sequences, DG is higher for stiffer mo-
lecules, that is the stiffer the molecule, the weaker the
binding (energy is wasted on bending a stiff oligonuc-
leotide). This in fact can be expected since Cro has to
curve the molecule, and the energy required is linearly
proportional to the stiffness (Equation 1).

The slope of the curve corresponds to a curvature
actually found in the crystal structure [33]. In non-

operator sequences, on the other hand,1G is lower for
stiffer sequences, that is the stiffer the sequence, the
stronger the binding. Namely, relatively less energy is
needed for restricting a rigid molecules movement.

SDAB: Modelling vibrational phenomena in DNA

The interest in vibrational properties of DNA is under-
standable, as it has been speculated for a long time that
energy can propagate along the chain not only in terms
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Figure 3. (A) A simple model of Cro/DNA interactions (B) Binding
of Cro operator to oligonucleotides of different stiffness. Relation-
ship between the average stiffness (Young’s modulus) of DNA and
the free energy change(1G) of operator (blue) and non-operator
(red) DNA sequences.[33].

of stress (like in supercoiling or bending) but also as
waves in a vibrating string. Consequently sequence-
dependent vibrational differences may be responsible
in promoting or blocking energy flow along the DNA
molecule.

Even though to our knowledge, there is no convin-
cing experimental evidence to this supposition, there
is a vast body of theoretical modelling work on the vi-
brational behaviour of DNA. The non-linear dynamic
models used are quite different from the rod-models
and usually do not consider sequence-dependence.
Moreover, DNA is usually considered as vibrating
in vacuo and effects like solvation and binding of
molecular ligands can not easily be taken into consid-
eration. In this section, we show preliminary results on
the vibrational properties of the SDAB model of DNA.

Finite element methods make it possible to cal-
culate natural vibration frequencies and/or dynamic
response of a mechanical model. However, the SDAB
model is a non-linear case since the bending flexibility
is different in various directions. There are possibilit-
ies to derive approximate analytical solutions for the

calculation of normal modes in this particular (‘bi-
linear’) case, however numerical solutions are also
straightforward and are widely used in the vibrational
analysis of mechanical structures. In these calcula-
tions, the mechanical model is first exposed to an
initial bending impact or bending, and then it is left to
vibrate by itself. The frequencies are then determined
by Fourier analysis of the displacements in the time
domain. These vibrations are calculated for a modelin
vacuo. The surrounding environment can be modelled
as a viscous medium that damps the vibrations – in
principle damping is not expected to influence very
much the frequencies as the damping ratio has small
values. Figure 4 shows a simple modelling experi-
ment. A model of 32 residues was fixed on one end
as shown in the inset and the free end was deflected
to a moderate curvature of 7 degrees per helical turn
and then left to vibrate. The movement of the free end
was analysed by Fourier analysis to give the frequency
spectrum shown here. The frequency values in such an
experiment depend on the size of the molecule so they
are not expected to correspond to physically meas-
urable frequencies. However, the frequencies as well
as the amplitudes (intensity) of the vibrations do de-
pend on the sequence. Whether or not the differences
are meaningful in the physical sense, will have to be
determined by experimental work.

SDAB model: Prediction of bendable and curved
segments

The single energy minimum in Figure 2 is a con-
sequence of two facts: the base pairs are themselves
anisotropically bendable and, moreover, they are in a
sequence that dictates that the direction of principal
bendability is along one face of the DNA helix. This
can be best illustrated by a vector representation in hel-
ical circle diagrams – technique originally developed
for amphipathicα-helices in proteins32 (Figure 5A).
In these diagrams, the bendability value for each base
pair is plotted as a vector pointing towards the ma-
jor groove. In fact, inherently curved motifs show
asymmetrical distribution of bendability; large vec-
tors are on one side (Figure 5A). The vectors for base
pairs in straight sequences, by contrast, have a rather
symmetrical distribution. This amounts to saying that
in randomly chosen DNA the thermal fluctuations
in various directions will cancel out, while inher-
ent bending is dependent upon a specific sequence.
It is interesting to note that there is a mathematical
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Figure 4. Sequence-dependent vibrations of DNA-models. A is an inherently curved sequence fromLeishmania tarentolae, B and C are random
shuffled variants of the same sequence, with no predicted curvature.

Figure 5. (A)Vectorial representation (helical circle diagram) of DNA bendability in a curved sequence motif [(A)AAATGTCAAA(A)] from
a Leishmania tarentolaeclass II minicircle. The length of each black arrow is proportional to the magnitude of the bendability parameter at
a given sequence position. The gray arrow is the vectorial average of the bendability vectors and is considered to be a measure of predicted
curvature. (B) Predicted curvature and bendability against sequence (accession code Genbank LEIKPMNC2) plot. The values are calculated
for 32-bp-sequence windows and plotted at the starting point of each window. (C) Predicted curvature against bendability plots of curved
and straight sequences from Table 1. The lines indicate the border of random sequences obtained by random shuffling of the sequences of
Haemophilus influenzaegenome and yeast chromosome III.

analogy between bent DNA and amphipathic
α-helices in proteins. Helical circle diagrams were
originally developed for amphipathicα-helices in pro-
teins. Furthermore, the vectorial average shown in the
figures is analogous to the hydrophobic moment of
Eisenberg [34].

Given the fact that the bendability of the SDAB
model is asymmetrical towards the major groove,
thermal fluctuations will result in bending of the

model. How can one calculate the curvature from these
values? Gabrielian et al. [35] used the length of the
vectorial average (as shown in Figure 3A) as a measure
of predicted curvature; however, more rigorous geo-
metry calculations can also be used: bendability values
(see Table 1) can be considered to be proportional to
(but not necessarily identical with) static trinucleotide
roll values. In other words, the bendability parameters
can be considered to be analogous to a static geometric
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model in which the dynamic contribution of thermal
fluctuations is included.

With this assumptions, the SDAB model gives
accurate predictions of DNA curvature that compare
quite favourably to those of the static geometry models
(see Table 1). Table 1 also includes figures calculated
using the so-called consensus bendability scale14,
which was developed in order to increase the sensitiv-
ity of the prediction towards GC-based curved motifs
– these are often mispredicted using both the static
dinucleotide models15 and the original DNaseI scale.

One application of this prediction is to analyse
long DNA sequences, segment by segment, and then
to visualise the distribution of predicted curvature
(Figure 5B). We have developed simple visualisation
methods in which several sequence-dependent prop-
erties can be combined, either as 1D-plots (along the
sequence). In a 2D plot two properties of a segment
(like average bendability and predicted curvature) are
plotted against each other so each segment of a gen-
ome will produce a point in the plane (Figure 5C).
The distribution of these points is genome specific,
and also it allows one to visualise ‘outliers’ that is
segments and regions that are different from the rest
of genome. For example, protein coding and non
protein coding regions show quite different distribu-
tions, extremely curved, rigid or flexible segments
are much more frequent in the latter than in the
former (Figure 6). Several of these calculation meth-
ods are now included into an Internet-based server
http://www.icgeb.trieste.it/dna

A second, related, application of the method is
to visualise curved DNA molecules. Once such a
potential motif is identified in the sequence, the ex-
perimenter may wish to see what it looks like in three
dimensions. One possibility – now included in the
www server – is to reconstruct atomic co-ordinates
from the idealised trajectory calculated by a simplified
rod model. Standard modelling programs can be used
to generate the atomic co-ordinates which then have to
be refined with a combination of energy minimisation
by restricted simulated annealing (molecular dynam-
ics) and geometry optimisation. The latter steps are
necessary because introduction of bends into a DNA
molecule leads to atomic clashes (especially in the
backbone). This method accurately reproduces the tra-
jectory predicted by the rod model and the phosphate
atoms are reproducibly re-positioned by the simulated
annealing procedure. However, the accuracy of these
predicted atomic models is of course limited and in
our view they can be used mainly for the visualisation

Figure 6. 3D Curvature propensity vs. bendability histogram of the
Human T-cell receptor locus (Genbank: humtcrb). The protein cod-
ing regions A have a tight distribution around average bendability
and low curvature. The non-protein-coding regions B have a higher
number of stiff (low bendability), flexible and curved segments.

of the sidedness of the curve, that is localisation of the
major and minor grooves as well as sequence motifs
with respect to the curvature.

Conclusions and future directions

We can conclude that static and dynamic rod models
describe quite different aspects of the DNA molecule
with as few parameters as possible. If they succeed
– and they do, quite surprisingly – it means that the
parameters used by the model sufficiently explain a
given aspect of the molecule’s behaviour. Both type of
models can predict curvature in short DNA segments –
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in this respect they can be considered equivalent [36].
The differences in predictive accuracy may be due to
the parameterisation (e.g. trinucleotide versus, dinuc-
leotide representation, electrophoresis versus nucleo-
some data, etc.) and not to the models themselves.
Considering the significance of these structural fea-
tures, it is worth to mention that bendability/curvature
characteristics are conserved in evolutionarily [31, 35]
and functionally related sequences [37], and they cor-
relate well with regulatory sites known from experi-
ment [38]. So one can predict that these methods will
have a continued role in locating functional sites in
genomes and will hopefully contribute to our under-
standing how the putative conformational signals may
operate at the genomic level.

Refinements of rod models, especially the in-
corporation of tetranucleotide-based description will
probably increase the predictive accuracy and increase
the scope of applications. Future models may combine
both static and dynamic features with particular ref-
erence to the principles of non-linear DNA dynamics
[39] . At the same time molecular mechanic models
are also expected to expand to a wider range of local
phenomena as illustrated recently by Lavery and as-
sociates [40]. In the foreseeable future however, the
simple rod models will continue to play a key role in
the large-scale analysis of genomic data.
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