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1. INTRODUCTION 

Understanding and managing genomic data has become a major 
bottleneck of biomedical research that calls for novel informatics 
approaches. The task is immensely complex: to "understand" the role of a 
protein for example implies inserting it into a host of interconnected and 
evolving frameworks of biological knowledge, including 3-D structures, 
molecular interactions, biochemical pathyways, genomic locations, spatial 
and temporal roles within the cell, the organism, the population and the 
species. Similarity based predictions play an important role in this process: 
similar biological functions or roles are mostly inferred from similar 
structure or similar molecular interactions, etc. This is usually carried out by 
comparing a protein sequence with a database of known sequences, using 
such programs as BLAST [1, 2]. 

 
The ultimate goal of protein sequence comparison is to find biologically 

significant sequence similarities that can help one to infer the fold and/or the 
function of an unknown protein based on its sequence. The fundamental 
problem is that many of the biologically important sequence similarities are 
not significant in the statistical sense, i.e. the alignment scores or alignment 
patterns found between sequences similar in the biological sense can not be 
well distinguished from chance similarities. This is true both for protein 



 
 
domains that are shared by different protein superfamilies, as well as for 
complete sequences of proteins that carry the same function in different 
organisms (Figure 1) .   
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Figure 1  Self-smilarity of various sequence groups as determined by the BLAST program for 
A) protein domains (SBASE7.0, [15]) and orthologous sequences taken from complete 
genomes (COG [5]). Each sequence was compared with members of its own group using the 
BLAST program, and the average similarity score was calculated. 

 
The intuitive notion of "biologicaly significant similarities" can be best 

described as membership in a similarity group characterized by established 
similarities, such as a group of domain sequences, or a group of orthologous 
proteins. For example, the similarity of a, say, trypsin-like domain to other 
trypsin-like domains is considered as "biologically significant", while its 
similarities to unrelated sequences are referred to as "chance". Prediction of 
domain homologies or of protein function is thus different from simple 
sequence similarity search in the sense that it is not only concerned with 
finding the most similar sequence to a query, but rather with assigning the 
query to a known similarity group. Also, statistical significance is allways 
understood in a context (a database, a scoring system and a theoretical model 
of chance similarities) but membership in a biologically significant similarity 
group (e.g. "trypsin-like") is generally used as permanent quality. A great 
deal of work has been invested into the modeling of sequence similarity 
groups in terms of Hidden Markov Models, sequence profiles and related 
techniques [3]. All these approaches provide individual descriptions to each 
group under study and consequently they are difficult to update with the 
stream of genomic data.  

2. REPRESENTATION OF SIMILARITIES 

The aim of the present work is to characterize the distribution of 
similarity scores within the known sequence similarity groups and to 



  
 
develop a general, exemplar-based prediction strategy on this basis. The 
examples shown in Figure 2 in fact suggest that the "self similarity scores" 
found between the members of various similarity groups (gray circles) are 
more or less separated from the chance or "non-self" similarities i.e. those 
that unrelated sequences have with members of the same group (black 
triangles).  
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Figure 2 Number of significant similarities (NSD) vs. Average similarity score (AVS) plots 
in various domain sequence (SBASE) and orthologous protein sequence (COG) groups 
(Prosite, PFAM  or COG reference given in parenthesis): ABC Transporter 
[PROSITE:PS00211]; Kringle [PROSITE:PDOC00020]; Fibronectin III domain 
[PFAM:PF00041]; Transcriptional regulators, AcrR family [COG:COG1309]; Transcriptional 
regulators, LysR family [COG:COG0583]; Sensory transduction histidine kinases 
[COG:COG0642]. The data are determined from a database vs. database comparison using 
BLAST. Each dot represents an SBASE domain or a COG sequence. The AVS and NSD 
values are computed from the BLAST similarities between the sequence and other members 



 
 
of the group ("self similarities", circles ), or sequence and members of other groups ("non-self 
similarities", triangles) 

 
Some groups are "tight" in the sense that most members are significantly 

similar to most other members,  and, also there are differences in how well 
the self and non-self similarities are separated from each other. The intuitive 
concepts of "tightness" and "separation" can be visualized by plotting the 
empirical distributions the similarity scores as shown in Figure 3.  
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Figure 3 Variables used to characterize self- and non-self similarities. (Schematic histograms 
representation of the data shown in Figure 2). A) Empirical distribution of NSD of self-
similarity scores ( )⋅NSD

pP and non-self similarity scores ( )⋅NSD
nfpP  B) Empirical distribution of 

AVS of self-similarity scores ( )⋅AVS
pP  and non-self similarity scores ( )⋅AVS

nfpP The four 

distribution curves are computed from a database vs. database comparison and stored for each 
sequence group. During prediction, a sequence is compared to the domain (or COG) database 
with BLAST, and NSD and AVS are computed for all categories present in the output. Then, 
the values of ( )NSDP NSD

p
, ( )AVSPAVS

p
, ( )NSDP NSD

nfp
, and ( )AVSPAVS

nfp
, are simply read out from 

the precomputed empirical distributions. The cumulative score C is the sum of these variables, 
plus two threshold premium values TPNSD and TPAVS that are have a value of 2.0 if NSD and 
AVS are above the group threshold TNSD and TAVS; respectively, and zero otherwise. [4].  
 

The approach presented here consists in characterizing the self- and non-
self similarity distributions in a reference database, and then predicting 
group membership by comparing a query to the reference database. In this 
work we show results on domain sequences, using the SBASE domain 
sequence database [4] and functional similaritiews, using the COG database 
of orthologous clusters [5]. The similarity scores  are calculared with the 
BLAST program [1]. The key step of this approach is a simple 
transformation that represents a sequence object as a vector of similarity 
scores calculated with respect to a reference sequence database. This is 
equivalent of placing the sequence object into a similarity space with as 



  
 
many dimensions as there are members in the reference database. In this 
space, the object is no longer described in terms of its structure or sequence 
but rather by its similarities to the database objects. As the reference 
sequence databases can contain more than 100 thousand sequences, the 
similarity vectors would, in principle, have a very large number of 
components, even though most of them negligibly small. A solution to this 
problem is to filter the similarities by mathematical significance first, (with 
the BLAST program we achieve this by choosing a generously loose cutoff 
of P=0.8, ~ E=200), then to calculate group (class) averages of the similarity 
scores. The similarity of a sequence to a group g is then represented by two 
variables, the number of significant similarities, NSDg,  and the average of 
the corresponding similarity scores, AVSg. This is equivalent of dividing the 
similarity space into small neighborhoods corresponding to each similarity 
group, and define a class-specific similarity function between the query and 
each of the sequence groups. Each neighborhood will center around one 
similarity group, and will contain members of the group as well as well as 
non-members that nevertheless display significant similarity to various 
members of the groups, as shown for several domain and COG groups in 
Figure 2. (a complete set of 2-D plots is available at www.icgeb.trieste.it). 
The variables used to describe each neighborhood are those shown in Figure 
3. These are local variables in each neighborhood and characterize self-and 
the non-self similarity within the neighborhood (NSDg, AVSg). They are 
determined from a database vs. database comparison and stored for each 
neighborhood as a knowledge base of similarities.  

3. CATEGORIZATION ALGORITHMS 

The categorization is then carried out by first comparing a query 
sequence with the reference database, then evaluating the search output in 
comparison with this knowledge base using one of the 3 simple classification 
methods described below. The interesting point is that after this 
transformation, many of the most difficult sequence categorization tasks (i.e. 
those cases where the within-group similarity is is very far from what is 
considered significant in the statistical sense) can be quite efficiently solved 
using standard, simple non-parametric classification methods, of which we 
give three examples. 

 
i) The first such approach is a nearest neighbor algorithm applied to the 

self similarities: The categories are ranked according the NSD and AVSg 
values, and if the winner of both list is same, that category will be assigned 
to the query, other cases will be reported as "doubt". It is required, however, 



 
 
that the AVSg and NSDg values should be beyond threshold values defined 
as the smallest respective value found in the given group of the reference 
database (Figure 3). This nearest neighbor method provides correct 
predictions (no false positives or false negatives) in  80 % of the domain 
groups and 71 % of the functional groups.  Examples are shown in Table 1.  

 
ii) A more efficient yet simple scoring method incorporates both self and 

non-self similarities The cumulative probabilistic score Cg described in 
Figure 3 [4] does not require that either of the NSDg or AVSg values be 
beyond the respective thresholds; it will be calculated for all categories 
present in the search output and the category with the highest Cg value will 
be assigned to the query. It is used as a simple diagnostic tool, for a sequence 
to be considered a member of the group, its C score should reach the lowest 
value recorded for the group - other cases are reported as doubt. Table 1 
shows that the probabilistic score allows correct prediction in many further 
sequence groups, leaving incorrect predictions in only 112 domain groups 
(10%) and 194 functional groups (9 %).  

 
iii) For the categories that can not be efficiently handled by either of the 

two previous methods we may apply more sophisticated techniques. We 
chose a standard feed-forward artificial neural network (ANN) architecture 
with 6 hidden units (Figure 4), using the 6 parameters shown in Figure 3 as 
the input [6]. The ANN method produces correct predictions in 55 domain 
groups and very low number of errors in the others (Table 1). At this stage, 
however, some of the weaknesses of the approach become apparent: 
artificial neural networks require a large training set, so they can not be 
applied efficiently to small domain sequence groups. This problem is 
especially conspicuous with the COG functional groups some of which are 
typically quite small. As a workaround, we selected homologous sequences 
from other databases (Swiss-Prot and PIR), but this is in some cases quite 
difficult because of the annotation conflicts that exist between the various 
databases. We developed ANNs only to 5 of the "problematic" functional 
sequence groups, and the results are as satisfactory as those obtained with 
the domain groups. While the parameters of the previous two methods are 
automatically derived from on a database vs. database comparison statistics, 
the neural network method requires an individual training for each of the 
sequence groups studied. The architecture  



   

Sequence group Prediction method 
Nearest neighbor Probabilistic scoring Artificial neural network 

Final 
performance Name N1,2 NS3 AVS4  E5 

correct fp/fn correct fp/fn correct fp/fn correct fp/fn 
SBASE release 7.0 
KRINGLE DOMAIN 61 172.92 (172-173) 156 (69.69-273.01) 1.27E-14 61 0/0 61 0/0 - - 61 0/0 
COLLAGEN TRIPLE HELIX REPEAT 211 879(878-879) 144.67(89.52-181.48) 3.82E-13 211 4/0 211 0/0 - - 211 0/0 
7 TRANSMEMBRANE RECEPTOR 825 650.84(23-798) 115.75(56.84-274.17) 2.10E-08 825 6/0 825 0/0 - - 825 0/0 
CYTOCHROME C OXIDASE SUBUNIT II. 233 294.66(17-406) 290.62(67-409.91 1.45E-33 233 1/0 233 0/0 - - 233 0/0 
ABC TRANSPORTERS 769 54.83 (6-104) 196.07 (74.62-440.93) 6.39E-20 769 11/0 769 6/0 769 1/0 769 1/0 
SUSHI DOMAIN (SCR REPEAT) 165 287.10 (19-446) 73.12 (4407-155.45) 4.92E-03 165 30/0 165 3/0 165 0/0 165 0/0 
PROTEIN-KINASE DOMAIN 1642 1456.05 (13-1621) 112.41 (54.36-273.00) 6.28E-08 1640 9/2 1642 30/0 1642 0/0 1642 0/0 
TRYPSIN-LIKE DOMAIN 442 380.94 (9-419) 125.75 (47.94-353.36) 6.86E-10 442 170/0 442 3/0 442 0/0 442 0/0 
ANK REPEAT 157 193.32 (5-447) 61.93 (46.43-90.24) 1.09E-01 156 33/1 157 4/0 155 2/2 155 2/2 
FIBRONECTIN TYPE III DOMAIN 350 146.86 (5-489) 93.40 (54.05-267.33) 9.99E-06 350 514/0 350 8/0 350 2/0 350 2/0 
EGF-LIKE DOMAIN 436 741.08 (3-1271) 53.86 (35-73.53) 1.60E+00 433 181/3 436 34/0 436 3/0 436 3/0 
IMMUNOGLOBULIN DOMAIN 2584 1040.36 (4-1791) 120.66 (41.90-345.63) 1.20E-09 2584 3011/0 2584 633/0 2552 71/32 2552 71/32 

Of a total of 52933 sequences 45117 7592/250 5775 2041/0 1165 166/99 52389 445/99 
Of a total of 1515 of groups 1213 270/112 154 147/0 113 55/54 1427 90/54 

COG  
Transcriptional regulators, LysR family 87 73.63 (8-85) 109.47 (70.92-152.38) 2.41E-07 87 0/0 87 0/0 - - 87 0/0 
Acyl-CoA dehydrogenases 58 48.20 (18-57) 139.07 (64.39-223.82) 2.72E-11 58 0/0 58 0/0 - - 58 0/0 
Transcriptional regulators, AcrR family 88 53.59 (12-83) 80.54 (62.56-100.81) 1.79E-03 86 0/2 88 0/0 - - 88 0/0 
Dipeptide/oligopeptide/nickel ABC-type  
transport systems, periplasmic components 

62 48.25 (8-60) 112.80 (64.66-217.37) 

1.55E-07 

59 0/3 62 0/0 - - 62 0/0 

Glycosyltransferases I 107 48.20 (2-90) 86.27 (51.0-388.89) 5.51E-04 89 0/18 107 1/0 300 2/0 300 2/0 
Sensory transduction histidine kinases 195 89.93 (1-153) 83.75 (46.0-144.62) 1.14E-03 145 1/49 194 6/1 264 2/4 264 2/4 
Thiol-disulfide isomerase and thioredoxins 104 34.63 (1-72) 89.17 (48.0-156.0) 9.81E-05 79 0/25 104 4/0 218 1/6 218 1/6 
Serine/threonine protein kinases 154 116.48 (4-146) 98.96 (59.88-147.58) 1.35E-05 130 0/22 152 2/2 1622 1/12 1622 1/12 
Permeases 363 95.12 (1-238) 105.07 (38.5-447.17) 1.45E-06 288 0/75 363 0/5 428 29/16 428 29/16 

Of a total of 28141 sequences 24728 71/3429 27457 684/684 888 35/35 27457 684/684 
Of a total of 2104 of groups 1494 48/658 1910 194/194 5 5/4 1910 194/193 

 
1 The comparisons were done with the BLAST program. 
2 Number of sequences in the group  
3 Number and range (max-min) of significant similarities to members of the same group 
4 Average similarity score and range (max-min) of significant similarities to members of the same group 
5 Expect value, calculated as SmnE −⋅= 2 ; 

2ln

lnKAVS
S

−⋅
=

λ , where m= 31411157, n= 100, k=0.138, lambda=0.318 

 



 
 

 
is general, however, i.e. it does not depend on the domain group so the 

the training is automated. In addition, the trainig process takes a very short 
time (on the average it took less than 2 minutes for a domain group, using a 
300 MHz single processor Sun work-station). 
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Figure 4 The backpropagation neural network architecture used for domain recognition. The 
variables are explained in the text and in Figure 3. 

 
WWW servers for domain and function prediction are available at 

www.icgeb.trieste.it/sbase 

4. DISCUSSION 

 
The predictive performance of these methods compares quite favorably 

with other methods such as Hidden Markov models [7] and profile searches 
[8]. Essentially, the present approach provides efficient categorization in the 
time frame of a simple sequence similarity search, and does not even require 
iterative re/searching of the database. We believe that the success of this 
approach is primarily due to the similarity-based encoding of the data. This 
is apparent from the fact that artificial neural networks with only 6 input data 
could efficiently handle the categorization in all cases in which there was a 
sufficient number of data available for training.  

 



  
 

We term the present method a memory-based approach, because its 
principles, especially the nearest neighbor algorithms i and ii are analogous 
in many respect to the memory-based learning paradigm described by 
Stanfill and Waltz [9].Clearly, NSD, AVS and the probabilistic score C can 
be regarded as class-specific similarity (distance) functions that have 
parameters (thresholds, frequency distributions) which are learned from the 
database. Second, the reference database and the similarity knowledge base 
can in fact be considered as the memory of the system. This memory 
consists of two parts, a) Information expressed in terms of propositions 
added by human annotators (class labels, i.e. definition of domains or 
functions), and b) Information stored in inter-object connections that are 
determined automatically for each group from database vs. database 
comparisons (class average similarities, thresholds and and empirical 
distributions). It is noted that the simple, memory-based categorization 
strategies i) and ii) proved successful in the vast majority of the cases, neural 
networks had to be used for some of the very difficult and large groups. It is 
worth mentioning that similarity groups with low average statistical 
significance and short in sequence required more sophisticated methods (ii) 
and iii), the others could be handled by the simple, common sense nearest 
neighbor algorithm.  It is important to point out the cases that could not be 
properly categorized by this approach: Out of 1515 domain groups, 17 such 
groups were found;  they were not sufficiently separated for algorithms i and 
ii, but had too few data for training ANNs.  On the other hand, out of 2104 
COG clusters only 194 could not be categorized without mistakes using the 
simple algorithms; in those cases, however,  annotation conflicts (between 
COG, Swiss-Prot and PIR) may have been the underlying reason. This points 
to the known fact that nearest neighbor type methods are quite sensitive to 
database errors [10]. 

 
The advantage of the current method is its speed and simplicity. 

Sequence classification tasks are typically solved by strategies that are based 
on individual models of the sequence groups described in terms of. HMMs 
and profiles etc. These are computationally intensive strategies (as they 
require multiple alignments) and require a substantial human overhead for 
updating. The current method offers a comparable if not better performance 
(Table 1) moreover it is quite simple to update. Adding a new sequence 
group to the reference database consists in comparing the members of the 
new group to each other and to the database using BLAST, defining the 6 
class specific quantities shown in Figure 3 (The two thresholds and the 4 P 
distribution curves)  and updating the corresponding data of those classes 
that showed significant similarities with the new group. The speed of the 
method is a consequence of the encoding and data reduction schemes 



 
 
developed on the basis of earlier observations [11, 12]. Grouping and 
evaluating the scores by classes means that only the immediate 
neighborhood of the similarity groups, i.e. a small fraction of the entire 
similarity space is explicitly represented, which however contains practically 
all detectable similarities (i.e. those with significance values P<0.8). 
Typically, a domain sequence will have significant similarities to 4 goups on 
the average, so the number of cases to be tested is not too large.  

 
The present approach is conceptually different from most other sequence 

classification methods, because it uses an exemplar-based description [13] of 
the similarity groups. The classification methods used by the COG [5] and 
the SYSTERS [14] databases are also exemplar based, while most other 
methods use consensus-models that are probabilistic descriptions of the 
similarity groups [13]. Exemplar-based methods have the important 
advantage that they are not statistically biased, i.e. allow the detection of 
atypical examples in the presence of an excess of known typical examples.  

 
The present approach here is not limited either to the application 

examples or to the simple algorithms described here. All three algorithms 
were chosen because of their simplicity and none of them is considered as 
optimal in any sense; preliminary results show that adaptive kernel methods 
and support vector machine recognizers may provide useful alternatives 
[10]. The choice of application areas will basically depend on the availability 
of a metrics distance (similarity measure) capable of distinguishing the 
object classes. It is important to note that the object classes used in this work 
were conceptual constructs based on human knowledge. It is equally 
possible to use classes automatically generated by clustering algorithms. 
Future application areas may include e.g. prediction of metabolic pathways, 
evolutionary networks and related classification schemes.  
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