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An artificial neural network (ANN) solution is described for the recognition of domains in protein sequences.
A query sequence is first compared to a reference database of domain sequences by use of BLAST and the
output data, encoded in the form of six parameters, are forwarded to feed-forward artificial neural networks
with six input and six hidden units with sigmoidal transfer function. The recognition is based on the distribution
of BLAST scores precomputed for the known domain groups in a database versus database comparison.
Applications to the prediction of function are discussed.

Sequence similarity searching is a crucial step in analyzing
newly determined protein sequences. Whereas similarity
searching by programs such as BLAST (Pearson and Lipman
1988; Altschul et al. 1990, 1997) or FASTA (Wilbur and Lip-
man 1983; Lipman and Pearson 1985) allows the inference of
homology and/or function in many cases, identification of
multidomain proteins is often problematic because their simi-
larities point to various unrelated protein families. The cur-
rent best solution to this problem is the use of pattern data-
bases that store the common sequence patterns of domain
groups in the form of consensus representations (for review,
see Attwood 2000). Various pattern representation methods
are in use, including regular expressions (Bairoch et al. 1996),
position-dependent frequency matrices (Gribskov et al. 1987),
and Hidden Markov Models (HMMs) (Sonnhammer et al.
1998). All of these representations are based on multiple se-
quence alignments. Even though these consensus pattern rep-
resentations — such as used in PROSITE (Hofmann et al.
1999), PRINTS (Attwood et al. 2000), PFAM (Bateman et al.
2000), PRODOM (Corpet et al. 2000), BLOCKS (Henikoff et al.
2000), PROTFAM (Mewes et al. 2000), INTERPRO (Apweiler et
al. 2000), and others (for review, see Attwood 2000) — can be
optimized so as to reach a very high prediction performance.
It is well known that construction of multiple alignments as
well as updating them with the stream of new domain se-
quences requires a substantial human overhead, which is
partly due to the high computational complexity of the prob-
lem. BLASTor FASTAsearches on domain sequence databases
(Corpet et al. 2000; Murvai et al. 2000a) offer a good alterna-
tive, however, the evaluation of the output requires human
judgement and/or iterative search strategies, such as those
used by PSI-BLAST (Altschul et al. 1997). One of the under-
lying problems is that the known structural and functional
domain groups are quite variable in terms of size, sequence-
length, as well as similarity between the members, and espe-
cially, short and variable domain sequences are sometimes
quite hard to detect (Atwood 2000).

Artificial neural networks (ANNs) have been used very
successfully in biological sequence analysis for purposes as
diverse as protein secondary structure prediction, recognition

of signal peptide cleavage sites, gene recognition, etc. (for re-
view, see Baldi and Brunak 1998). Representation of sequence
data in a form suitable for nonrecursive ANNs can be quite
difficult because of the varying length of the sequences. A
common solution to this problem is to use a window sliding
over the protein sequence (Jagla and Schuchhardt 2000). On
the other hand, a sequence window encompassing, for ex-
ample, 19 amino acids can be mapped to a 19 � 20 = 380
dimensional vector. Training an ANN recognizer for so many
input parameters would require an enormous data set for
training (Jagla and Schuchhardt 2000). Adaptive encoding
techniques can be used to find a smaller number of relevant
parameters in the course of the training process. However,
recognition of a short pattern, such as a signal peptide cleav-
age site, still required 79 input parameters (Jagla and Schuch-
hardt 2000). Recognition of substantially longer protein do-
mains may thus require a prohibitively large number of pa-
rameters. In addition, individual training strategies may be
necessary for the >2000 known domain types, which may
lead to formidable updating problems.

In a search for an automated and computationaly fea-
sible ANN solution, we found that sequences can be encoded
with as few as six parameters, provided that suitably encoded
BLAST search outputs, rather than domain sequences, are
used to train the ANNs. The underlying idea is as follows:
Assume we want to decide whether a domain belongs to a
given domain group. A query sequence is then first compared
with a reference database of protein domain sequences by use
of the BLAST program, and then two domain similarity pa-
rameters are calculated between the query and each of the
domain/types found in the output. Another four values are
then calculated that characterize the probability of the given
domain belonging to the domain group, given the knowledge
of the above two parameters and their distribution within the
given domain group. These six parameters are then used to
train a feed-forward ANN, both with positive and negative
instances of the given domain group. We found that training
is very fast and the resulting predictive performance is very
good in comparison with other methods, which are typically
also more time consuming.

RESULTS
The six parameters used for representing the similarity of
a sequence to a domain group are schematically shown in
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Figure 1. NSD is the number of significant BLAST similarities
(P <0.8) between the sequence and members of a given do-
main group, whereas AVS is the average BLAST score of these
similarities. In addition, the empirical distributions of both
the NSD and the AVS values were computed both for the
group members and for the significantly similar (P <0.8) non-
member sequences resulting in the functions Pp

NSD�, Pp
AVS�,

Pnfp
NSD�, and Pnfp

AVS�, respectively (Fig. 1). The latter four func-
tions had been determined from a database versus database
comparison carried out with the SBASE-A 7.0 domain se-
quence collection. Each domain sequence was then charac-
terized with the six parameters, NSD, AVS, Pp

NSD(NSD),
Pp
AVS(AVS), Pnfp

NSD(NSD), and Pnfp
AVS(AVS).

For the training of ANNs, we selected a few known do-
main types that represent various critical properties of the
domain groups (Fig. 2). The Kringle domains form a tight
group (Fig. 2A), that is, most members are significantly similar
to all other members of the group, and this domain type can
be identified more or less precisely with simple regular expres-
sion-type patterns such as the PROSITE signatures. The ANK
domain-type (Fig. 2B) is more problematic. Its members are
far less similar to each other than those of the Kringle group
and cannot be described with a simple regular expression. The
EGF-like domain-type is a large group (Fig. 2C) that does not
separate well from the non-member neighbors, and this
makes the recognition of the corresponding proteins harder.
Finally, FN3, the fibronectin type III repeat is an especially
variable group (Fig. 2D), with only three fully conserved
amino acids residues within a segment of ∼ 100 amino acids,
therefore, the traditional domain-recognition methods per-
form quite poorly on it.

To evaluate the importance of each parameter, we carried
out a set of training experiments using the EGF-like domain
group as an example (Table 1). If only the NSD and AVS values
were used, the performance was poor, as shown by a relatively
low Matthews coefficient. Increasing the number of input pa-
rameters to four by including either the values of Pp

NSD(NSD)
and Pp

AVS(AVS), or the values Pnfp
NSD(NSD), and Pnfp

AVS(AVS) sub-
stantially increased the prediction accuracy. The probability
estimates Pp

NSD(NSD), Pp
AVS(AVS) were somewhat more effi-

cient in this respect than the Pnfp
NSD(NSD), and Pnfp

AVS(AVS) pa-
rameters (Table 1, rows 3,4).

The sequence queries were presented in two alternative
forms as follows: (1) by use of an entire protein sequence as
the query; and (2) by use of only a selected potential similarity
region of the query sequence. In the second case, the query
was first compared with the domain database, and the poten-
tial similarity regions were identified by use of a cumulative
similarity score versus sequence plot as described (Murvai et
al. 1999). Contiguous regions longer than 11 residues were
excised. On the average, a protein sequence contained 15–20
such similarity regions (even though very large proteins can
have up to 100 such regions). These regions were then indi-
vidually compared with the database. Table 2 compares the
two strategies for various domain types; region selection per-
formed better in most cases.

On the basis of these preliminary experiments, we se-
lected an architecture with six input parameters and one hid-
den layer of six elements (Fig. 3) and used pre-selected simi-
larity regions (strategy b) for the training process. The perfor-
mance of 40 such networks is shown in Table 3A. The number
of false positives and false negatives is extremely low in most

cases. In fact, these numbers compare quite fa-
vorably with those obtained with other systems
in almost all cases. A representative comparison
is shown in Table 4.

The general applicability of the system was
tested on an experimental data set of proteins
annotated according to their biological func-
tions. This data set was created by merging the
COG database of orthologous protein groups and
a functionally well-annotated subset of SWISS-
PROT and PIR databases into a nonredundant set
of 81 079 sequences (Methods). This was neces-
sary as a preliminary analysis (not shown) re-
vealed that many of the COG groups are too
small for training ANNs, and in addition, BLAST
found too few significantly similar neighbors for
many of the larger groups. From the resulting
data set we chose a number of groups, listed in
Table 3B, and identified the members on the ba-
sis of their annotations. Then, the Pp

NSD�, Pp
AVS�,

Pnfp
NSD�, and Pnfp

AVS� functions were determined
from a database versus database comparison, and
the neural networks trained for the selected
groups as described in Methods. The predictive
performance of the ANNs trained for these func-
tional groups is only slightly inferior to those ob-
tained with the domain groups (Table 3B). In
some cases, there is a conspicuously high number
of false predictions, for example, of 428 permease
sequences, 29 false positives (6.8%) and 16 false
negatives (3.7%) were found. We mention, how-
ever, that much of the false predictions seem to
be due to erroneous functional annotations in

Figure 1 Variables used to characterize domain similarities. Average BLASTsimilarity
score (AVS) versus number of significant BLAST similarities (NSD) plot for Trypsin do-
mains (red circles) from SBASE 7.0 (Murvai et al. 2000a). Each red circle represents a
domain sequence. The AVS and NSD values are computed from the BLAST similarities
between the sequence and other members of the group. Blue triangles represent do-
main sequences that are not Trypsin domains but still produce a significant BLAST
similarity score with some of the Trypsin domains. The database versus database com-
parison was carried out with BLAST (Altschul et al. 1990), by use of a significance
threshold of 0.8 and a minimum score of 32. (Inset) Schematic representation of the
empirical distributions (see text for details). Values of Pp

NSD(NSD), and Pnfp
NSD(NSD), are

simply read out from the precomputed empirical distributions. A similar procedure is
followed for the AVS scores. The resulting six values are the input parameters of the
ANNs.
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the databases. Of the 35 false positives and 38 false negatives
listed in Table 3B, 21 and 13 of them, respectively, coincide
with conflicting annotations between various sequence data-
bases such as SWISS-PROT, PIR, and COG. However, it has to
be pointed out that this comparison was carried out on an
experimental data set, therefore, the results cannot be used to
draw conclusions on the quality of the underlying databases.

We also note that the selected sequence groups represent es-
pecially difficult cases (i.e., the separation of group members
from non-group members is rather poor as compared with
other sequence groups). It appears that for the present
method, the case of functional clusters are not more difficult
than that of domain clusters; on the other hand, the accuracy
of functional annotations may become a limiting factor.

Figure 2 NSD versus AVS plots in the following domain groups (PROSITE or PFAM reference given in parenthesis): EFG-like [PROSITE:PDOC00021];
ABC Transporter [PROSITE:PS00211]; Kringle [PROSITE:PDOC00020]; Sushi (SCR) repeat [PFAM:PF00084]; Fibronectin III domain
[PFAM:PF00041]; ANK repeat [PFAM:PF00023].
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The training ANN recognizers for all 116 difficult domain
groups took less than 3 h of CPU time on a single processor
SUN Ultra-Enterprise 450 server (300 MHz), excluding the
time of database versus database comparison with BLAST. The
time required to analyze an average protein sequence (300
amino acids) with all of the ANN recognizers is typically be-
low 1 min per sequence, and at least 95% of this time is spent
with the BLASTsearch. (The estimates refer to a nonoptimized
program code).

DISCUSSION
Even though ANNs have a relatively long history in biological
sequence analysis, recognition of domain types is a new ap-
plication area that at first may appear problematic because of
diversity of data. Simple prediction methods can be used for
many of the domain types, whereas others, especially the
large and heterogeneous groups, are usually problematic.
From the 1515 domain groups in the SBASE-A domain collec-

Table 1. Optimization of Neural Network Architecture (Input Parameters vs. Performance on the EGF-Like Domain Type1)

Training set Test set Total

Parameter No tp fp fn tn C tp fp fn tn C tp fp fn tn C

1 NSD, AVS 2 242 23 49 311 0.77 125 3 20 137 0.85 360 14 76 460 0.81

2 NSD, AVS, PNSDnfp (NSD), PAVSnfp (AVS) 4 284 4 7 330 0.97 142 3 3 137 0.96 426 8 10 466 0.96

3 NSD, AVS, Pp
NSD (NSD),Pp

AVS (AVS) 2 291 2 0 332 0.99 145 3 0 137 0.98 434 4 2 470 0.99

4 NSD, AVS, PNSDp (NSD), PAVSp (AVS), PNSDnfp (NSD), PAVSnfp (AVS) 4 284 4 7 330 0.97 142 3 3 137 0.96 426 8 10 466 0.96

1tp, True positives; fp, false positives; tn, true negatives; fn, false negatives.
C is the Matthews (Pearson) correlation coefficient (Matthews 1975),

C =
tp × tn − fp × fn

��tp + fn��tp + fp��tn + fp��tn + fn�
if fp = fn = 0, C = 1.000.

Each neural network contained one hidden layer with the same number of elements as the number of input parameters. Note that the Total
values were obtained by retraining the ANNs on the entire dataset, so these values are not necessarily equal to the sum of the corresponding
Training Set and Test Set values.

Table 2. Comparison of Sequence Preprocessing Methods in Various Domain Groups

Training set Test set Total

Group tp fp fn tn tp fp fn tn tp fp fn tn

EGF-like domain
S 281 13 10 34988 134 13 11 17488 415 22 21 52480

R 291 5 0 329 145 4 0 136 436 7 0 467

Fibronectin III Domain
S 214 1 23 35054 100 12 13 17521 325 11 25 52577

R 237 1 0 507 113 0 0 228 350 2 0 734

Sushi domain (SCR repeat)
S 105 0 1 35186 59 5 0 17582 165 0 0 52938

R 106 0 0 77 59 0 0 32 165 0 0 109

ANK repeat
S 98 0 4 35190 55 52 2 17539 151 3 6 52778

R 99 1 3 56 54 0 1 22 155 2 2 77

ABC transporters
S 530 0 0 34762 239 0 0 17407 769 0 0 52169

R 530 3 0 90 239 2 0 43 769 1 0 137

WD repeat
S 184 3 6 35099 77 40 0 17529 261 3 6 52668

R 186 2 4 168 76 0 1 92 262 2 5 260

S = whole sequence vs. R = regions.

Figure 3 The backpropagation neural network architecture used for
domain recognition.
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Table 3. Performance of Neural Network Recognizers for Various Domain Groups

A. Protein Domain Groups Training set Test set Total

tp fp fn tn tp fp fn tn tp fp fn tn

Immunoglobulin domain 1721 24 15 2428 829 18 19 1155 2552 71 32 3554

Zinc finger, C2H2 type 330 9 9 540 147 3 6 245 477 12 15 785

Protein kinase domain 1120 0 0 264 522 0 0 119 1642 0 0 383

EF hand 409 14 1 116 186 3 1 62 594 17 3 178

EGF-like domain 291 2 0 332 145 3 0 137 436 3 0 471

WD repeat 186 2 4 168 76 0 1 92 262 2 5 260

Fibronectin type III domain 237 1 0 507 113 0 0 228 350 2 0 734

ABC transporters 530 3 0 90 239 2 0 43 769 1 0 137

Globin 595 2 2 200 269 1 0 92 866 3 0 292

Homeobox domain 584 0 1 58 260 0 0 31 845 0 0 89

ANK repeat 99 1 3 56 54 0 1 22 155 2 2 77

Sushi domain (SCR repeat) 106 0 0 77 59 0 0 32 165 0 0 109

RNA recognition motif (=RRM, RBD, or RNP domain) 215 1 2 50 99 1 1 26 315 2 2 76

Tetratricopeptide repeat 98 0 0 152 45 0 0 74 143 0 0 226

Short chain dehydrogenase 316 0 0 55 142 0 0 29 458 0 0 84

Trypsin 296 0 1 215 146 0 0 97 442 0 1 312

Dead/H box helicase domain 277 1 4 499 117 0 2 238 397 2 3 736

Kazal-type serine protease inhibitor domain 211 0 0 84 99 0 0 38 310 0 0 122

Response regulator receiver domain 242 0 0 20 112 0 0 11 354 0 0 31

Spectrin repeat 21 0 1 293 21 0 1 124 43 0 1 417

4FE-4S ferredoxins and rel. iron-sulf. clust.bind.domains 183 0 0 51 86 0 0 24 269 0 0 75

RAS family 203 0 0 32 96 0 0 14 299 0 0 46

SH3 domain 185 0 0 27 94 0 0 6 279 0 0 33

APOA/APOE-repeat 33 0 0 498 16 5 2 229 51 12 0 720

Zinc-binding dehydrogenases 152 0 0 74 80 0 1 26 233 0 0 100

Cytochrome C 142 1 6 73 71 0 1 33 213 1 7 106

ATPases associated with various cell. activites (AAA) 122 0 0 102 69 0 0 38 191 0 0 140

Helix-loop-helix DNA-binding domain 153 0 1 21 74 0 0 13 227 0 1 34

Alpha amylase 135 0 0 118 69 0 0 51 204 0 0 169

HSP70 protein 130 1 0 247 63 0 0 117 193 0 0 365

Ligand-binding domain of nuclear hormone receptors 176 1 0 13 81 0 0 10 257 0 0 14

Protein-tyrosine-phosphatase domain 110 0 0 42 56 0 0 20 166 0 0 62

Lectin in C-type domain 129 0 0 23 59 0 0 15 188 0 0 38

Intermediate filament proteins 127 2 0 192 61 2 0 86 188 2 0 280

Zinc-binding metalloprotease domain 148 1 0 4 75 0 0 1 223 1 0 5

ACYL carrier protein domain 102 0 0 8 54 0 0 2 156 0 0 10

PAS domain 77 0 0 52 46 0 0 15 123 0 0 67

FOS/JUN DNA-binding domain 108 0 0 69 64 0 0 23 172 0 0 92

Snake toxin 102 0 1 31 51 0 0 12 153 0 1 43

B. Functional Groups Training set Test set Total

tp fp fn tn tp fp fn tn tp fp fn tn

Permeases 289 22 12 593 139 7 4 270 428 29 16 863

Sensory transduction histidine kinases 177 2 3 167 87 2 1 75 264 2 4 244

Glycosyltransferases I 204 1 1 103 95 0 0 46 300 2 0 148

Thiol-disulfide isomerase and thioredoxins 139 0 4 65 77 1 4 17 218 1 6 82

Serine/threonine protein kinases 1107 1 10 264 515 1 2 121 1622 1 12 386
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tion, 116 groups are difficult in the sense that categorization
could not be achieved by simple statistical methods (Murvai
et al. 2000b). Our primary goal was to design ANN recognizers
for these difficult cases.

The ANN architecture used here works best on larger
groups, the false-positive and false-negative rates were lower
than 2.8% (EF-hand domain) and 3.2% (Cytochromse C), re-
spectively, and inmany cases there were no false positives and
false negatives. The recognition performance deteriorates for
groups with <50 members (the APOA/APOE is a typical ex-
ample). The recognition accuracy of the present ANNmethod
compares quite favorably with other methods (Table 4). It has
to be noted that ANNs presented here can be trained in a
quasi-automated manner, whereas the conventional methods
of domain recognition require multiple alignment as well as
substantial human intervention. The human intervention
necessary during ANN training was needed to check the input
sequence data. With properly selected positive and negative
sets, the training is fully automated.

We found that training speed and prediction accuracy
substantially improved by selecting the most similar subset of
the negative group for the training. On the other hand, the
training process is quite sensitive to errors in the database;
even one unidentified positive domain erroneously assigned
to the negative group (or vice versa) can lead to a conspicu-
ously low recognition accuracy (i.e., >30% false positives or
false negatives). In this respect, ANNs provide a sensitive qual-
ity test for the domain groups. Of the 116 difficult domain
groups of SBASE-A 7.0 domain collection, ANN training re-
vealed a total of 129 potentially mistaken annotations in 67
groups (not shown).

We surmise that the apparent success of this approach
can be attributed primarily to the efficiency of the data-
encoding process. First of all, not the sequences themselves,
but only BLAST outputs are compared. This process can be
best pictured as evaluating the query in a similarity space
rather than within the sequence space. Second, a protein do-
main sequence database is used for comparison so that the
search outputs can be directly evaluated in terms of domain

similarities. In this way, the preprocessed data incorporates a
vast amount of biological knowledge.

The idea underlying the entire process is quite simple:
The similarity between a query and a domain group depends
on two main parameters, the NSD and the AVS (Hegyi and
Pongor 1993; Murvai et al. 1999). The higher these values, the
higher the similarity. On the other hand, the final similarity
will also depend on two intuitive criteria, the tightness of the
group (the similarity of the groupmembers to each other) and
the separation of the group members from other sequences
(how many non-member sequences have significant similari-
ties with the members of the group) (Murvai et al. 2000b).
Clearly, the same NSD, AVS value pair may have one meaning
when a group is tight and separated from the neighborhood
(like the Kringle domains in Fig. 3), and another meaning if
the group is scattered and overlapping with the neighbor-
hood (like the EGF-like domains in Fig. 3). The cumulative
frequency distributions Pp and Pnfp were designed to capture
these properties, and, in fact, including these parameters into
the training substantially improves the predictive power. Pp
seemed to be more effective in improving predictive power
than Pnfp.

The main difficulty for domain sequence recognition is
the data explosion that makes sequence pattern databases
very difficult to update. Sequence pattern recognizers that are
based on multiple sequence alignment can be very efficiently
optimized so as to reach very low error rates, but they may
need careful reoptimization as novel or atypical domain se-
quences appear. In contrast, the current artificial neural net-
work procedure can be quite simply updated by adding new
sequences to the training set, and, unlike with multiple align-
ment, little human intervention is necessary. For this reason,
we hope that this approach will be useful in different fields of
genome sequence analysis.

METHODS

Sequence Data
Sequences of multidomain proteins were taken from SWISS-

Table 4. Comparison of Various Prediction Methods on Selected Domain Groups

Domain type
(number in SWISS-PROT 38) Number of errors2

Ann
(present
method) PROSITE PRINTS PFAM

EGF (340) 3 12 108 17

Fibronectin type 3 (241) 2 n.a. 27 7

Trypsin (273) 0 26 0 0

ANK-repeat (119) 0 n.a.3 n.a. 9

WD-repeat (247) 7 25 15 8

Cytochrome C (78) 8 4 5 3

1The total number of sequences that contain the given domain type in Swiss-Prot 38. The release numbers of
PROSITE, PRINTS, and PFAM are those used by Swiss-Prot 38.
2Errors for PROSITE, PRINTS and PFAM were determined from the Swiss-Prot annotation (e.g., a sequence annotated
as having an EGF repeat but having no cross-reference to a given pattern database was considered not detected by
the corresponding method). Thus, this number contains only false negatives. On the other hand, the errors of ANN
contain both false positives and false negatives.
3n.a. = Not available (i.e., the domain type is not included in the corresponding method).
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PROT (Bairoch and Apweiler 2000) and PIR (Barker et al. 2000)
databases and were merged into a nonredundant database
containing 52 938 sequences. The domain sequences (79 478
individual domains classified in 1515 domain groups) were
taken from SBASE-A 7.0 (Murvai et al. 2000a). The protein
sequences characterized by function were taken from an ex-
perimental data set on the basis of COG (Clusters of Ortholo-
gous Groups) database that contains 28 141 sequences from
21 complete genomes (Tatusov et al. 2000). First, a nonredun-
dant data set was created from the COG database and from
those sequences of the SWISS-PROT and PIR databases that
contained functional annotations in their feature tables. A
few sufficiently large (>200 members) groups were chosen at
random as examples for ANN analysis (Table 3B) and their
members identified on the basis of their annotations as given
in the various databases. The sequence annotations were also
checked by visual inspection. The rest of the sequence groups
were not checked in detail as they served only as negative
examples in the ANN training

Data Encoding
The encoding of data is based on a prior analysis of the do-
main groups on the bais of a database versus database com-
parison carried out with the BLAST program (Altschul et al.
1997) on the domain sequences of SBASE-A 7.0 by use of
ungapped alignments. Similarities with P values below 0.8
were taken into consideration; for brevity, these are termed
significant similarities. The value of 0.8 was chosen empiri-
cally, although we have found that in the range above 0.7 the
results are not sensitive to the actual value of this parameter.
Each domain sequence was then characterized with two vari-
ables, the number of significant similarities to members of its
own group (NSD), and the average BLAST similarity score of
the significant similarities computed for the same members
(AVS). In addition, the distribution of the values of these two
variables were also computed for each domain group (Fig. 1).
Namely, the empirical distributions of both the NSD and AVS
values were computed both for the group-members (red), and
for the significantly similar non-member sequences (blue),
resulting in the functions Pp

NSD�, Pp
AVS�, Pnfp

NSD�, and Pnfp
AVS�,

respectively.
Encoding of the sequences for the training of and the

recognition by an ANN corresponding to a given group was
then carried out as follows. A sequence was compared with
the reference database (SBASE-A 7.0) by use of BLAST, and the
NSD and AVS were computed for the given group from the list
of hits with P <0.8 (this is exactly the same procedure that was
applied in the preprocessing phase). Then the values of
Pp
NSD(NSD), Pp

AVS(AVS), Pnfp
NSD(NSD), and Pnfp

AVS(AVS) were deter-
mined by looking up the precomputed values of these func-
tions. The sxi values obtained in this way served then as input
parameters, their magnitude was normalized to the interval
[�1, +1].

Training and Performance Evaluation
Several network architectures were trained and tested. The
architecture was varied both in terms of the number of hid-
den layers, the number of hidden neurons within the hidden
layers, and the number of inputs, that is, many different al-
ternative domain representations were tested. The Matrix-
Backpropagation (MBP) package of D. Anguita (1994), which
implements a batch-back propagation algorithm with an
adaptive learning rate and momentum (Vogl et al. 1993) was
used. MBP is an efficient implementation of the back-
propagation algorithm that includes a per-epoch adaptive
technique for gradient descent (Anguita et al. 1994). It was
consistently observed that increasing the number of input
vector elements improved the performance when this num-
ber was small, but the performance approached saturation as
more parameters were included. Using Occam’s Razor, we pre-

sent the results for the smallest nets that achieved the near-
best performance. The training and test sets were kept strictly
separated and the number of false positives and false nega-
tives, as well as the Matthews coefficient (Matthews 1975) —
a version of the Pearson correlation coefficient —were used to
quantitatively follow the improvement of the predictive per-
formance.

For a given domain-type, we selected first those protein
sequences that contained at least one copy of the domain in
question (positive set). The group was subdivided by random
sampling into a training set (66.6 %) and a test set (33.3 %),
the latter set being withheld from the training. For negative
instances, we used a selected subset from the rest of the da-
tabase; those sequences that showed the highest similarity to
the given domain group, in fact, did not contain any copy of
the given domain (close neighbors). The sequences that were
selected by the actual implementation were those that had
either their NSD or their AVS value (or both) higher than 60%
of the lowest corresponding values within the given domain
group. This filtering yielded negative sets one to four times
the size of the positive sets (see Table 2).

A mixture of experts approach was then used to further
improve the generalization capability of the networks: For
each domain-group, five ANNs were trained, differing from
each other in their initial sets of weights. A query sequence
was then analyzed with all five neural networks and the final
decision was based on a majority vote, that is, a domain type
was assigned if it was detected by at least three of the ANNs.
The robustness of the method is shown by the fact that 99.7%
of the positive and 94.9% of the negative decisions listed in
Table 3A were reached by a 5 : 0 vote.
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