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The distribution of the Ca-Ca distances between residues separated by
three to 30 amino acid residues is highly characteristic of protein folds
and makes it possible to identify them from a straightforward compari-
son of the distance histograms. The comparison is carried out by contin-
gency table analysis and yields a probability of identity (PRIDE score),
with values between zero and 1. For closely related structures, PRIDE is
highly correlated with the root-mean-square distance between Ca atoms,
but it provides a correct classi®cation even for unrelated structures for
which a structural alignment is not meaningful. For example, an analysis
of the CATH database of fold structures showed that 98.8 % of the folds
fall into the correct CATH homologous superfamily category, based on
the highest PRIDE score obtained. Structural alignment and secondary-
structure assignment are not necessary for the calculation of PRIDE,
which is fast enough to allow the scanning of large databases.
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Introduction

Understanding protein structure is central to the
post-genomic era. In order to understand the data,
the structures need to be categorized according to
their recurrent local motifs or folds, which is not
an easy task, since nearly all proteins have struc-
tural similarities to other proteins.1 In order to ®nd
the known folds in a protein structure one needs,
on the one hand, a comprehensive collection of
fold structures and, on the other, a suitable search
program that can compare the new structure with
the entries of the fold collection. Even though the
construction and maintenance of a fold database
is a formidable task, several such collections
have been developed, such as FSSP, SCOP and
CATH.2 ± 4 However, the quantitative assessment of
structural similarity is problematic in many
respects. First of all, the comparison of three-
dimensional (3D) structures is very computer-
intensive, which is partly due to the nature of
structural alignments. Second, the root-mean-
square distance (rmsd) value (which is calculated
between the Ca atoms of a pair of optimally super-
posed structures) works well as an indicator of
ing author:

ensional; rmsd,
similarity only if the structures are closely related.
Clearly, distantly related structures may only share
a small segment that can be structurally aligned,
and the magnitude of rmsd values determined
within that small segment may not re¯ect the simi-
larity of otherwise divergent structures. The categ-
orization of unrelated structures depends at
present on knowledge-based fold-classi®cation
schemes that are different in many subtle details,
such as the assignment of secondary structures and
domain boundaries, and the differences may, in
some cases, lead to classi®cation con¯icts.5 Further-
more, structural-genomics initiatives are set to pro-
duce a large amount of data,6 ± 8 so there is a clear
need for novel, fast data-analysis strategies to
extract biologically relevant information.9

The present work aims to de®ne a simple
numerical measure of fold similarity that is suf®-
ciently fast to compute so as to allow the scanning
of large databases. The underlying assumption is
that if a fold of a protein can be reconstructed from
the distances measured between all pairs of its Ca

atoms, then folds can also be compared in terms of
their Ca-Ca distances. We used histograms of the
Ca-Ca distance distributions as a simpli®ed rep-
resentation of the structure. The comparison of dis-
tance histograms can be carried out using the
standard statistical method of contingency table
analysis that yields a probability of identity value
for the two structures that we call the PRIDE score.
# 2002 Academic Press
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On closely related 3D structures the PRIDE score is
well correlated with rmsd distance. It is also
shown, using the CATH database4 as a model, that
PRIDE scores correlate well with the similarity
relations of the more distantly related fold groups.
As the calculation of the score does not require
either a structural alignment or knowledge-based
decisions, such as the assignment of secondary
structures, we believe that it can be useful in auto-
mated fold-classi®cation programs.

Results and Discussion

The PRIDE score: probability of identity
between two protein structures

For the calculation of similarity, we represent the
protein structure by the length distribution of its
Ca distances. For the sake of simplicity, let us sup-
pose that we describe a protein fold by a set of its
Ca(i)-Ca(i � 8) distances, i.e. by the distances separ-
ating the Ca atoms eight residues apart, and pre-
pare a histogram of the length distribution.
Identical structures will give rise to identical histo-
grams and, more importantly, the probability of
identity between two histograms derived from two
different structures can be simply assessed by
contingency-table analysis based on the w2 test.
Contingency-table analysis is a robust statistical
method that can also be applied if there are no
analytical models describing the distribution of the
population.10 The details of the calculation are
described in Data and Methods. Naturally, there is
no reason to limit the description of a structure to
Ca(i)-Ca(i � 8) distances. For the calculation of the
fold similarity, we described a protein structure by
the distributions of its Ca(i)-Ca(i � n) distances,
where n is an integer ranging from 3 to 30, i.e. by
28 histograms. The probability of identity (PRIDE)
of two protein structures was then calculated by
comparing each of the 28 histogram pairs, and cal-
culating the average of the resulting 28 probability
values.

An example of the computation is given in
Figure 1. The crystal structure of the N-terminal
domain of human serum albumin has been
reported in two different space groups, C2 (PDB
®le 1bj5) and P21 (1uor).12,13 There are only minor
differences between the two structures (Figure 1(a))
due to different crystal-packing interactions and to
different ligands complexed to the protein. It is
apparent, for example, that the last two C-terminal
helical segments are quite different in 1bj5 and
1uor. The histograms showing the distribution of
the Ca(i)-Ca(i � n) distances for n � 8, 15, 22, and
29 are shown in Figure 1(b). The PRIDE values,
computed for each of the 28 histogram pairs with
3 4 n 4 30 (Figure 1(c)), show that the two struc-
tures differ essentially because of the spatial
arrangement of residues close to each other in the
protein sequence. The probability values oscillate
around 0.5 for n < 10 while they approach 1.0 for
higher n values. This is in fact expected, since the
two structures differ only in the local stereochemis-
try of a few polypeptide segments, while their glo-
bal conformation is quite similar. The average of
the 28 probability values (the PRIDE score) is 0.73,
i.e. the probability that the two structures are iden-
tical is 73 %.

The upper and lower limits of n, 30 and 3, were
chosen on an empirical basis; other values may be
chosen as the method is adapted for speci®c tasks.
We found that n values below 3 carry little infor-
mation, probably because the covalent nature of
the peptide bond makes the distances between resi-
dues close in sequence nearly constant and inde-
pendent of the protein conformation. In contrast, n
values of 3 or slightly higher are able to dis-
tinguish, for example, the helical backbone confor-
mation from the extended one. Finally, n values
higher than 30 are also less informative because,
especially for small structural domains, there are
too few distances available (data not shown).

As PRIDE represents the probability of two
structures represented by their Ca-distance distri-
butions being identical, it follows that its value is
between 0 and 1 (0 4 PRIDE 4 1) and that
1 ÿ PRIDE is, by de®nition, the probability of the
two structures being different.

The metric properties of a structural similarity
measure are important for clustering and for evol-
utionary studies. For M to be a metric distance
between two structures, X and Y, the following cri-
teria have to be ful®lled: (i) M(X,Y) 5 0, the equal-
ity holding if, and only if, X � Y. The equality is
by de®nition true both for PRIDE and for
1 ÿ PRIDE. (ii) M(XY) �M(YX) (symmetry). In
fact, the symmetry property should follow from
the de®nition of PRIDE but the calculation (in par-
ticular, the merging of histogram bins that contain
less then 5 % of the data) depends on the serial
order of the structures compared. This formula
was checked for PRIDE (and 1 ÿ PRIDE) on the
same randomly selected dataset and was found
to hold with an accuracy of 0.0001.
(iii) M(XY) �M(YZ) 4 M(XY) (triangular inequal-
ity). This inequality was checked for 1 ÿ PRIDE on
the same dataset and found to hold with a maxi-
mal deviation of 0.00013. As the PRIDE values are
given with a precision of two digits, we conclude
that the PRIDE score conforms to a metric distance
within the limits of its numerical accuracy.

The PRIDE score as a measure of close and
distant similarities

The degree of similarity between a pair of pro-
tein structures is routinely measured with the rmsd
between equivalent atoms computed after optimal
superposition of the two three-dimensional struc-
tures. The relationship between PRIDE and rmsd
was determined by an analysis of 230 NMR pro-
tein structure ensembles deposited in the Protein
Data Bank (see Data and Methods).14 This dataset
was selected in order to represent close structural
similarities, and also because the ensembles of



Figure 1. The crystal structure of
the N-terminal domain of human
serum albumin has been deter-
mined in different space groups.
(a) MOLSCRIPT11 view of the
structures in the C2 and P21 space
groups. (b) Distributions of the
Ca(i)-Ca(i � n) distances; n is the
number of residues intercalated
between the residue pair for which
the distance is computed; values of
n � 8, 15, 22 or 29 are given as
examples. (c) Probability of identity
for the 28 histogram pairs
(3 4 n 4 30) as a function of n.
The PRIDE value is the arithmetic
average of the 28 values.

Estimation of Protein Fold Similarity 889
closely related structures can be aligned without
dif®culties. Care was taken to exclude high-value
sequence similarities that might bias the results. As
expected, PRIDE values decreased as rmsd
increased, and a strong correlation was apparent
(Figure 2); the relation between PRIDE and rmsd is
apparently not linear. We note that by de®nition,
PRIDE � 1.00 if rmsd � 0.00.

It is a well-known problem that optimal rmsd
values cannot be easily determined for structures
that are not closely related, because regions that
can be structurally aligned may comprise only a
part of the structures compared. Such an example
is the classi®cation of 28 NAD-binding domains.15

While the similarity of these NAD-binding
domains is apparent to the human eye, the regions
that can be structurally aligned can be as low as
20 %.15 As the rmsd values are known to vary with
the length of the structural alignment,16 ± 18 an
alternative strategy, based on a computer-intensive
dynamic structural-alignment algorithm and a
novel structural-similarity measure, had to be
developed.15 The folds were thus classi®ed into
four groups that coincide with their biological
function (Figure 3(b)) such as the dihydrofolate
group (1dlr, 8dfr, 1drh, and 3dfr), the glutathione
group (1geu, 1lvl, 2npx, and 1typ), the glyceralde-
hyde group (1gd1, 1hdg, and 1gga), and the alco-
hol group (the remaining 17 domains in
Figure 3(b)).15 Using the PRIDE scores, on the
other hand, one could produce a virtually identical
classi®cation (Figure 3(a)), without any need of
structural alignments, indicating that the PRIDE
score might be used in a broader range of simi-
larities than rmsd values. The PSD index (protein
structural distance) recently published by Yang &
Honig19 is also applicable in a broad range of simi-
larities; however, PSD, as with other protein simi-
larity measures,1 is based on structural alignments.

In order to test the PRIDE score on a wider
range of similarities we used the CATH database4

as a model system. In the CATH fold-classi®cation
scheme, seven hierarchically organized labels (C,
A, T, H, S, N and I) are assigned to each domain.
The highest and broadest level of classi®cation is
the Class (label C), de®ned by the secondary-struc-
ture composition. The second, the Architecture
(label A), is determined by the overall arrangement
of the secondary-structural elements. The connec-
tivity between the secondary-structural elements is



Figure 2. Relationship between the PRIDE and rmsd
values. A total of 54,533 rmsd and PRIDE comparisons
were made between the members of the 230 NMR struc-
ture assemblies listed in Table 3.
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taken into consideration at the third level, the Top-
ology (label T), while the fourth, the Homologous
Superfamily (label H), has a de®nition based on a
combination of three-dimensional and sequence
similarity and clusters together homologous folds
that share a common ancestor. The ®fth classi®-
cation level, the Sequence Family (label S), dis-
criminates structures within each H level according
to their sequence similarity (higher than 35 %) and
Table 1. PRIDE values observed within various cluster group

CATH label CATH category

a b
I Identical representatives
N Nearly-identical representatives
S Sequence family
H Homologous superfamily
T Topology
A Architecture
C Class (a, b, a/b or few sec. str.)
None Different Class

The fold entries of the CATH database were compared with each
line C as an example, the comparisons were made separately in the
and variance (column c) were computed with the exclusion of the PR

a The nearest neighbour (column d) denotes the domain having
score. A score in the Class � a group was considered positive if
member of the Class � a group.
therefore clusters together protein folds associated
with highly similar functions. The last two hier-
archical classi®cation levels, the Nearly Identical
Family (label N) and the Identical Family (label I),
further subdivide each S-level according to the
sequence similarity, which reaches 95 % and 100 %,
respectively. The domain de®nitions and the classi-
®cation are available at ftp.biochem.ucl.ac.uk/
pub/cathdata/v2.0/(®les domall.v2.0 and cath-
s.list.v2.0). As it is apparent from the foregoing
description, the CATH system is a full scheme of
classi®cation based on a vast amount of human
knowledge, while PRIDE is a simple similarity
measure, presently not optimised for fold classi®-
cation. In fact, the goal of our analysis was to
establish whether or not the PRIDE score is in
agreement with the general principles of the
CATH classi®cation scheme. For this analysis we
carried out an ``all against all'' comparison on the
CATH database using the PRIDE score (68,817,241
structural comparisons).

Table 1 shows a summary of these comparisons
organized according to the CATH labels. The folds
grouped into the same I group (identical sequence,
i.e. all the seven CATH labels, C, A, T, H, S, N and
I, are identical) produce a PRIDE average score of
0.97, while those within the same N group but
within a different I group (nearly identical
sequences, i.e. six CATH labels, C, A, T, H, S and
N, are identical and the seventh, I, is different) pro-
duce an average score of 0.93. In the same way, the
broader the structural category, the lower the aver-
age PRIDE score calculated between the members,
and the higher the variance of the score. In other
words, PRIDE is in a good general agreement with
the CATH categories throughout the entire dataset,
i.e. throughout the entire range of fold similarities.

Another way to evaluate the PRIDE score is to
use it as a ``nearest neighbour classi®er'' for the
CATH categories, i.e. to check whether or not the
highest PRIDE score obtained for a given domain
s of the CATH database

PRIDE score computed with
members of the same category

(average � variance (no. of
comparisons))

Nearest PRIDE
neighbour within the

same groupa (%)

c d
0.97 � 0.06 (72,517) 69.3
0.93 � 0.12 (75,429) 87.3
0.56 � 0.22 (800,060) 98.5

0.44 � 0.19 (1,071,841) 98.8
0.35 � 0.17 (2,568,350) 99.0
0.26 � 0.19 (9,028,969) 98.9
0.26 � 0.20 (24,547,471) 99.5
0.11 � 0.12 (68,817,241) 100.0

other within each group that belongs to the category. Taking
groups ``a``, ``b``, ``a/b`` or ``few secondary structures'', average
IDE scores of domain pairs with identical A label.

the highest similarity to a given domain, based on the PRIDE
the highest PRIDE score pointed to a protein which was also



Figure 3. Graphs describing the
cluster analyses of 28 NAD-binding
domains carried out by a hierarchi-
cal agglomerative algorithm
coupled with a single linkage simi-
larity criterion.30 (a) Cluster anal-
ysis based on PRIDE. The
proximity matrix elements measur-
ing the similarity between each
pair of domains were equal to
1 ÿ PRIDE, where PRIDE was the
probability of identity between the
two domains. (b) Cluster analysis
based on the optimal superposition
of the Ca atoms of each pair of
domains; each proximity matrix
element was de®ned as
100 ÿ 100(n1/n2), where n1 is the
number of residues structurally
equivalent and n2 is the maximum
number of residues that can be
structurally equivalent, i.e. the
number of residues in the structure
with the shorter sequence over the
two compared. The NAD-binding
domains were taken from reference
15: 1dlr, dihydrofolate reductase
(Homo sapiens); 8dfr, dihydrofolate
reductase (Gallus gallus); 1drh,
dihydrofolate reductase (Escherichia
coli); 3dfr, dihydrofolate reductase
(Lactobacillus casei); 1geu, gluta-
thione reductase (E. coli); 1lvl, dihy-
drolipoamide dehydrogenase
(Pseudomonas putida); 2npx, NADH
peroxidase (Streptococcus faecalis);
1typ, trypanothione reductase
(Crithidia fasciculata); 1gd1, D-glycer-
aldehyde-phosphate dehydrogenase
(Bacillus stearothermophilus); 1hdg,
D-glyceraldehyde-phosphate dehy-
drogenase (Thermotoga maritima);
1gga, D-glyceraldehyde-phosphate
dehydrogenase (Trypanosoma brucei
brucei); 1hdx, alcohol dehydrogen-
ase (H. sapiens); 2ohx, alcohol dehy-
drogenase (Equus caballus); 1qor,
quinone oxidoreductase (E. coli);
1dhr, dihydropteridine reductase

(Rattus norvegicus); 1hdr, dihydropteridine reductase (H. sapiens); 2hsd, 3-a,20-b-hydroxysteroid dehydrogenase (Strep-
tomyces hydrogenans); 1pgo, 6-phosphogluconate dehydrogenase (E. coli); 2nad, formate dehydrogenase (Methylotrophic
bacterium pseudomonas); 1psd, D-3-phosphoglycerate dehydrogenase (E. coli); 1bmd, malate dehydrogenase (Thermus
¯avus); 4mdh, malate dehydrogenase (Sus scrofa); 1emd, malate dehydrogenase (E. coli); 1hlp, malate dehydrogenase
(Haloarcula marismortui); 1ldm, lactate dehydrogenase (Squalus acanthias); 1ldn, lactate dehydrogenase (B. stearothermo-
philus); 9ldt, lactate dehydrogenase (S. scrofa); 1lld, lactate dehydrogenase (Bi®dobacterium longum).
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structure points to the correct category. The data in
column d of Table 1 show that in 69 % of the cases
the closest structure was labelled with the same
seven classes, C, A, T, H, S, N and I. Most of the
incorrect similarities were within the next level of
similarity, i.e. with domains sharing only the ®rst
six CATH labels. This value increased to 87 % by
allowing the last label to vary, and to 98 % by con-
sidering only the ®rst ®ve classes, C, A, T, H, and
S, and ignoring the identity/difference of the last
two. In other words, PRIDE can distinguish the S
and H classes with an almost 99 % accuracy. We
consider this result remarkable for two reasons.
First, PRIDE was not optimised or tuned in any
respect for recognizing the categories. Second, the
99.5 % success rate in the broadest categories (C)
points to differences between the automatic categ-
orization based on PRIDE nearest neighbours and
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the knowledge-based categorization of the CATH
database. For example, out of the 67 CATH struc-
tures differently categorized by PRIDE, 45 (67 %)
were preliminary annotations and seven (10 %) fell
into the ``few secondary structures'' (C � 4) cat-
egory. An examination of all the cases would go
beyond the scope of this paper, but Figure 4 shows
a typical example. The two domains 1b7tA7 (myo-
sin heavy chain from Aequipecter irradians, residues
771-835) and 1dkgA1 (nucleotide-exchange factor
from Escherichia coli, residues 34-137) have different
CATH annotations (their C, A, T, H, S, N and I
labels are 4, 10, 270, 10, 1, 1, 2, and 3, 90, 20, 20, 1,
1, 1, respectively); on the other hand, their overall
structures are apparently quite similar (Figure 4)
which is also re¯ected by the relatively high
PRIDE value (0.31) determined between them.

A cluster-analysis dendrogram of 45 domains
randomly selected from the CATH database is
shown in Figure 5. The domains were selected so
as to fall into three groups (with 15 domains in
each group), represented by the following labels:
group 1: C � 1, A � 10, and T � 150; group 2:
C � 2, A � 30, and T � 30; and group 3: C � 3,
A � 10, and T � 20. The dendrogram produced on
the basis of 1 ÿ PRIDE shows that the domains
having different secondary structure (C label) are
clearly distinguished. There is a clear discrimi-
nation also at the lower levels. For example, the
domains with C � 1, A � 10, T � 150, H � 20,
S � 1, and N � 3 are separated from those having
identical C, A, T, H and S labels and N � 1.

Conclusions

The distribution of the Ca(i)-Ca(i � n) distances
seems to be a simple and useful description of fold
geometry. The distance distributions can be com-
pared via a straightforward and robust statistical
technique, contingency-table analysis. This com-
parison yields a probability value for the two dis-
tributions being identical, the PRIDE score, the
value of which is intrinsically normalized between
0 and 1. The PRIDE scores possess the basic metric
properties, and were shown to produce the correct
classi®cation of folds over a wide range of simi-
larities. For closely related protein 3D structures
PRIDE is highly correlated with the rmsd values
calculated between the main-chain Ca atoms. For
more distant similarities, such as those included in
the CATH database, PRIDE scores produced classi-
®cations that were in very good agreement with
the known categories. PRIDE scores can be calcu-
lated for proteins of any size, but in order to test
for the presence of a fold within a larger protein,
the query structure needs to be divided into
domains.

The PRIDE approach is clearly based on a sim-
pli®ed representation of the three-dimensional
structure. Several alternative, simpli®ed represen-
tations have been reported (such as the Ca-Ca dis-
tance plot) as well as various methods based on
such simpli®ed representations.20 ± 22 The method of
Sippl21 is conceptually related to that presented
here, since it considers the distances between Ca

atoms separated by a variable number, n, of resi-
dues. Nevertheless, PRIDE values are obtained by
a completely different procedure, i.e. the distri-
butions of these distances rather than their actual
values are used. As a consequence, PRIDE can be
much more easily applied to protein structures
with a very modest degree of similarity. More
recently, several fast methods have been proposed
for the detection of protein-protein similarity.23

These methods represent a protein structure as an
ensemble of secondary-structural elements, and the
orientation and the topology of the elements are
then compared with different techniques. The
Figure 4. Two domains from the
CATH database: 1b7tA7 (myosin
heavy chain from Aequipecter irra-
dians, residues 771-835) and
1dkgA1 (nucleotide-exchange factor
from E. coli, residues 34-1367)
1dkgA1 (b) is the domain most
similar to 1b7tA7 (a), on the basis
of the PRIDE value (PRIDE � 0.31).
Despite the fact that they are differ-
ently classi®ed in the CATH data-
base (their C, A, T, H, S, N, and I
labels are 4, 10, 270, 10, 1, 1, 2, and
3, 90, 20, 20, 1, 1, 1, respectively),
the close similarity of these two
domains is apparent.



Figure 5. Classi®cation of 45 three-dimensional
domains based on the PRIDE scores. Each domain is
identi®ed by a number and, in parentheses, by its C, A,
T, H, S, N, and I labels taken from the CATH database.
The domains, numbered from 0 to 44, are de®ned below
with their identi®cation codes from the Protein Data
Bank and their residue ranges. 0, bpx(92A-148A); 1,
1bvs(66D-148D); 2, 1cuk(67-142); 3, 1rpl(95-148); 4,
1zqf(9A-91A); 5, 1zqu(91-148); 6, 2bpf(92A-148A); 7,
5crx(20B-130B); 8, 7ici(92A-148A); 9, 7icp(92A-148A); 10,
7ict(92A-148A); 11, 8icf(92A-148A); 12, 8icn(92A-148A);
13, 8icr(92A-148A); 14, 9ica(92A-148A); 15, 1ahj(111B-
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advantage of the PRIDE approach over these
alternative methods is that for the calculation of
PRIDE, the secondary structure does not need to
be determined. This is an important difference,
since secondary structures can be de®ned in var-
ious ways,24 and since the secondary structure
assignments may strongly depend on the exper-
imental method (e.g. results from NMR and X-ray
diffractions are often very different) as well as on
the crystallographic resolution.

A potential limitation of PRIDE could be that
proteins with similar secondary-structural arrange-
ments but different fold might be confused, due to
the fact that (at least in the present version of
PRIDE) only Ca-Ca distances between residues less
than 30 residues are considered. In our experience,
the resulting ``background noise'' is very limited;
on the other hand it can also be extremely useful.
For example, two apparently unrelated proteins,
the PH domain of the human insulin receptor sub-
strate 1 (1qqg, residues 12-114 of chain A)25 and a
segment containing residues 136-567 of chain A of
Paracoccus denitri®cans cytochrome cd1 nitrite
reductase (1e2r)26 were found to exhibit a PRIDE
score of 0.66, which is indicative of considerable
structural similarity (Table 1). The latter protein
domain (1e2r) adopts a b-propeller fold, with eight
blades formed by four-stranded antiparallel b-
sheets, so it is clearly much larger and, at a ®rst
glance, different from the small PH domain.
A closer inspection reveals nevertheless that each
b-sheet of the b-propeller is intercalated between
the preceding and the subsequent b-sheet in such a
manner that one pair of four-stranded b-sheets in
1e2r is in fact very similar to the two b-sheets
of the PH domain 1qqg (Figure 6). The PH
domain could thus be considered as a subunit of
the b-propeller fold.

The most important advantages of the PRIDE
score are as follows. (i) As it requires no structural
alignment, it is very fast to compute and therefore
it can be used for scanning and/or classifying even
very large structural databases. (ii) It provides a
probability value that can also be appreciated by
212B); 16, 1ahj(111H-212H); 17, 1bcm(492B-559B); 18,
1bi1(175-222); 19, 1bia(271-317); 20, 1bkb(4-74); 21,
1c0 m(216C-269C); 22, 1d0y(33A-80A); 23, 1d1b(33A-
80A); 24, 1eif(4-73); 25, 1lvk(33-80); 26, 1mmg(33-80); 27,
1mne(33-80); 28, 1qqg(159A-262A); 29, 1vom(33-80); 30,
1alo(1-74); 31, 1c4c(1A-76A); 32, 1div(60-149), 33, 1lgr(1-
103); 34, 1qla(1E-106E); 35, 1qlb(1E-106E); 36, 2pia(226-
321); 37, 1qj2(3A-79A); 38, 1bml(12C-147C); 39,
1bml(289C-371C); 40, 1bml(151D-284D); 41, 1f52(1A-
103A); 42, 1f52(1C-103C); 43, 1f52(1E-103E); and 44,
1f52(1G-103G). The classi®cation was based on a hier-
archical agglomerative algorithm coupled with a single
linkage similarity criterion.30 The proximity matrix
elements measuring the similarity between each pair of
domains were equal to 1 ÿ PRIDE, where PRIDE was
the probability of identity between the two domains.



Figure 6. The PH domain 1qqg is
surprisingly similar to a b-propeller
fold (1e2r) on the basis of the
PRIDE value (0.66). Actually, two
adjacent b-sheets of the latter fold
(residues 436-545) compare quite
well with the sandwich of the two
b-sheets of the PH domain, which
can therefore be seen as a subunit
of the larger b-propeller fold.
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non-specialist users. (iii) For the purposes of classi-
®cation, PRIDE scores provide a useful alternative
to rmsd scores, since they provide a meaningful
classi®cation even for distantly related structures
that cannot be unequivocally superposed. (iv) The
only information needed to compute the PRIDE
values is given by the positional parameters of the
Ca atoms. Knowledge-based qualitative decisions,
such as the assignment of secondary structure, are
not necessary, and the sequence information is not
used in the classi®cation. The latter feature allows
one to study the conservation of structure and
sequence separately.

In the present, non-optimised implementation of
PRIDE, the fold-database (CATH, about 10,000
domains) is pre-computed into distance histo-
grams, which are stored on the disk. Each domain
query is ®rst translated into a set of distance histo-
grams, and then PRIDE is calculated between the
query and all members of the fold database;
®nally, the results of the comparison are written on
the disk. Much of the real time is thus spent on
input/output operations, and the complete time
requirement will depend on the size of the data-
base. Representative ®gures are given for a Silicon
Graphics workstation equipped with an SGI
R10000 CPU (Figure 7). If there are ten structures,
a time of 0.15 second is required for computing
and storing 100 PRIDE values. For 200 structures,
a total time of 37.13 seconds is suf®cient to calcu-
late and store 40,000 PRIDE values, i.e. the time
requirement is proportional to the square of the
number of structures. For a database of 10,000
domain structures, about half a day is thus
required to compute and store the PRIDE values
associated with 49,995,000 structure comparisons.
Once the database is stored on the disk, the evalu-
ation of individual domain queries is quite fast: we
estimate that about 1000 domains can be scanned
in one second using an SGI R10000 CPU.

The limitations of the PRIDE score follow from
its experimental nature. PRIDE values are pre-
sently calculated as a simple arithmetic average of
the 28 probability values resulting from the com-
parison of all the histograms. However, it is likely
that individual histograms carry different infor-
mation, which might in turn in¯uence the classi®-
cation. Weighted averaging procedures can be



Figure 7. Time required with an SGI R10000 processor
to read the 28 histograms of N domain structures, com-
pute N � N PRIDE values, and store them in a ®le. The
time increases linearly with the square of N (equation
written at the top left).
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developed depending on the goal of the analysis;
furthermore, the entire probability versus n plot
(Figure 1(c)) can be used as a graphic description
of the similarity.

Materials and Methods

Structural data

The protein structures were taken from the Protein
Data Bank14 and from CATH.4 A randomly selected,
non-redundant dataset of protein domains was created
for the testing of the metric properties of PRIDE as fol-
lows: 10 % of the PDB ®les were randomly selected by
taking the 10th, 20th, 30th, etc., ®le from an alphabetical
list. All structures were then subdivided into structural
domains with the DomainParser algorithm27 and the
®rst domain in the protein sequence was retained if it
was longer than 40 residues. A set of 869 structural
domains (377,147 unique pairs) generated in this manner
was used for checking the metric properties of PRIDE
and/or (1 ÿ PRIDE). For the determination of the PRIDE
versus rmsd relationship, 230 NMR model ensembles
were chosen from the PDB (Table 2). In order to avoid
potential statistical biases, a maximal sequence identity
of 25 % was allowed, as determined with PDB_
SELECT.28 Within each ensemble of NMR models, each
model was compared to all the others. In total, 54,533
comparisons of model pairs were thus performed. The
rmsd values were computed after optimal superposition
of the equivalent Ca atom pairs carried out using the
method of Kabsch.29
Calculation of the PRIDE score

The contingency-table analysis is a statistical method
used to ascertain if two samples represented by their his-
tograms come from the same population. One of its
important features is that it can also be applied if there
are no analytical models describing the distribution of
the population.10 The calculation is illustrated by the
comparison of two histograms containing the Ca(i)-
Ca(i � 8) distances of two structures, denoted as struc-
ture 1 and structure 2, respectively (Table 3). Given two
histograms of m bins written as obs(1,1), obs(2,1),
obs(3,1)...obs(m,1) for structure 1 and obs(1,2), obs(2,2),
obs(3,1)...obs(m,2) for structure 2, one can calculate the
expected value of each observation as:

exp�i; j� � obs�x;i�obs�j;x�
obs�xx� �1�

where obs(x,i) is the sum of the observations of structure
1 (column sum). In the example, obs(x,i) � 100, because
of the use of percentages; the normalization is otherwise
not a requirement. The obs(j,x) value is the sum of the
ith observations in the two histograms (row sum, written
in column g), and obs(x,x) is the total number of the m
observations in the two histograms (in the example it
equals 200 because of the normalization to percentages).
The following w2 value can then be computed:

w2 �
X2

j�1

Xm

i�1

�obs�i;j� ÿ exp�i;j��2
exp�i;j� �2�

and the probability of the two distributions being identi-
cal can be read from the corresponding w2 distribution of
m ÿ 1 degrees of freedom. Care must be taken that none
of the obs(i,j) values should fall below 5 %. In the
example (Table 3 and Figure 8), and throughout all the
calculations, the initial histograms of the Ca-Ca (i � n)
distances were calculated with a bin width of 0.5 AÊ ;
then, starting from the smallest values, the bins were
combined so that at least 5 % of the observations were
included in each bin (Figure 8(c) and (d)). Table 3 shows
the observed percentages for two structures after bin
width adjustment as an example. Then the expected
values are computed according to equation (1); for
example, the expected percentage of distances within the
15.5-17.5 AÊ range for structure 1 is given by 15.4 � 100/
200 � 7.7. The w2 value calculated according to equation
(2) is 6.89, and this corresponds to a probability of iden-
tity of 0.72, since in this example there are ten degrees of
freedom (the number of freedoms equals the number of
histogram bins after bin-width adjustment). All 28 histo-
gram pairs were processed in an analogous way, the 28
probability values were plotted as a function of n
(3 < n < 28), as shown in Figure 1(c) and the average was
computed and given as the PRIDE score. A precision of
two digits is used (e.g. 0.54 or 54 %).

Cluster analysis

The domains were classi®ed by cluster analysis with a
hierarchical agglomerative algorithm coupled with a
single linkage similarity criterion;30 the elements of the
square proximity matrix were set to 1 ÿ PRIDE. Each
domain pair was thus discriminated by its PRIDE value.
The classi®cation in Figure 3(b) is taken from reference
15.



Table 2. Identi®cation codes of the protein structures used here

1cg7(A)(30),1ej5(A)(20),1cfp(A)(25),1eit( )(10),1eio(A)( 5),1cfh( )(15),

1cfe( )(20),3leu( )(19),1bqv( )(28),1bqz( )(20),1ayg( )(20),1ef4(A)(20),

1ego( )(20),1rip( )( 6),1enw(A)(20),1eo0(A)(10),1erd( )(20),1rfa( )(30),

1rou( )(22),1rof( )(10),1ax3( )(16),1awo( )(20),1cf4(B)(20),3msp(A)(20),

3ncm(A)(20),1tba(A)(25),1suh( )(20),3ctn( )(30),3crd( )(15),1cis( )(15),

1e0l(A)(10),1chl( )( 7),1eci(B)(20),2cbh( )(41),1ed7(A)(30),1spf( )(20),

1sro( )(20),1b22(A)(30),3gcc( )(46),1fdm( )(20),1qmc(A)(42),1fct( )(27),

1aq5(A)(20),3rpb(A)(20),1ap7( )(20),1ap0( )(26),1aoy( )(23),1apf( )(20),

1apq( )(19),1apj( )(21),1fht( )(43),1qlo(A)(19),1aty( )( 9),1ce4(A)(20),

1qu5(A)(16),1auz( )(24),1esk(A)( 9),1auu(A)(10),1r63( )(20),1r2a(A)(17),

1ccv(A)(20),2def( )(20),1cdb( )(18),2pcf(B)(10),1qp6(A)(16),2ctn( )(30),

1qr5(A)(10),1wkt( )(20),1d8b(A)(15),1bf8( )(20),1d8j(A)(20),1wjb(A)(40),

1bgk( )(15),1bhi( )(20),1cn7(A)(20),1cmr( )(18),1cmo(A)(43),2sh1( )( 8),

1df6(A)(16),1bnx(A)(21),1dec( )(25),1ddb(A)(20),1bei( )(20),1beg( )(18),

2a93(B)(40),2a93(A)(40),1bk8( )(25),1bmw( )(38),1zto( )( 8),1cpz(A)(20),

2ptl( )(21),1cou(A)(18),1bm4(A)( 9),1cok(A)(18),2abd( )(29),1bmx( )( 8),

1cwx(A)( 4),1yuj(A)(50),1yua( )(26),1zfo( )(20),1zfd( )(45),1ztn( )( 8),

1zta( )(20),1bmy( )(10),1co4(A)(15),2prf( )(19),1zaq( )(12),1tpn( )(28),

1trl(A)( 8),1dv9(A)(21),2bi6(H)(18),2bds( )(42),1tvt( )( 6),1tsk( )(30),

1tnn( )(16),1dz1(A)(16),1dxz(A)(20),1tfi( )(12),1cjg(A)(11),1e01(A)(20),

1tle( )(14),3alc(A)(17),1b6f(A)(23),3bbg( )( 2),1dip(A)(10),2tbd( )(30),

1boe(A)(20),1bal( )(56),1bak( )(20),2bby( )(30),1dgz(A)(38),1vib( )(20),

1bc4( )(15),1cl4(A)(12),1dny(A)(21),1b8w(A)(20),2u1a( )(20),1dlx(A)(15),

1ba5( )(18),1ba6( )(10),1dk2(A)(25),1ckv( )(14),1b9u(A)(10),1b9r(A)(15),

1b9q(A)(19),1paa( )(10),1a6 s( )(20),1a66(A)(18),1a6b(B)(20),1a7 m( )(20),

1gyf(A)(16),1peh( )(10),1pba( )(20),1c4e(A)(20),1bvh( )(15),1hqi( )(12),

5znf( )(13),1hns( )(16),1ab3( )(26),2new( )(17),1pou( )(20),1pmc( )(36),

1pnh( )(25),1pnb(B)(10),1pnb(A)(10),1acz( )( 5),1prs( )(30),1abz( )(23),

1pft( )(25),1gnc( )(10),1pfl( )(20),4znf( )(41),2nbt(A)(10),1ghk( )(25),

1ghc( )(14),1hue(A)(25),1mut( )(15),1ncs( )(46),1c06(A)(16),1kjs( )(20),

1kla(A)(17),1ksr( )(20),1lre( )(20),2lef(A)(12),1by1(A)(20),1axh( )(20),

1bzg( )(30),1byv(A)(10),2jhb(A)(20),1iie(A)(20),1igl( )(20),1iml( )(48),

1irg( )(20),1imt( )(39),1c20(A)(21),2hp8( )(30),2hsp( )(20),1idz( )(20),

1iba( )(11),1ica( )(10),1jun(A)( 7),1jvr( )(20),1ngr( )(20),1joy(A)(21),

1khm(A)(20),2if1( )(29),1nkl( )(20),1qdp( )(20),1aiw( )(23),1fvl( )(18),

1qkh(A)(21),1akp( )(15),2fow( )(26),1agt( )(17),1pyc( )(15),2fmr( )(18),

1afo(A)(20),1qa5(A)( 2),1afp( )(40),1ah9( )(19),1qfq(B)(29),2nmb(A)(14),

1agg( )(24),1qk7(A)(20),1qk6(A)(10),1qky(A)(14),1qhk(A)(20),1qkl(A)(22),

1qey(A)(27),1adn( )(14)

Protein three-dimensional structures determined by NMR spectroscopy, deposited in the Protein Data Bank as model ensembles,
used to determine the relationship between the PRIDE and the rmsd values. Each identi®cation code is followed by the chain identi-
®er and by the number of models in parentheses.

Table 3. Distribution of the Ca-Ca(i � 8) distances for the two structures shown in Figure 1(a)

Structure 1 (1bj5) Structure 2 (1uor)

Bin no. (i) Range (AÊ ) Observed (%) Expected (%) Observed (%) Expected (%)
Sum of observed

percentages (c � e)
a b c d e f g

7.2 14.4
2 6.5-10.5 8.4 8.9 9.5 8.9 17.9
3 10.5-12.0 7.1 7.7 8.3 7.7 15.4
4 12.0-14.0 9.5 7.8 6.0 7.8 15.5
5 14.0-15.5 6.0 7.1 8.2 7.1 14.2
6 15.5-17.5 8.3 7.7 7.1 7.7 15.4
7 17.5-19.0 7.1 7.1 7.1 7.1 14.2
8 19.0-21.5 16.6 12.5 8.3 12.5 24.9
9 21.5-22.5 5.9 9.4 13.0 9.4 18.9
10 22.5-24.0 8.3 8.9 9.4 8.9 17.7
11 Over 24.0 15.6 15.8 15.9 15.8 31.5

Sum: 100.0 - 100.0 - 200.0

The histograms were ®rst computed with a bin width of 0.5 AÊ , then the bins were combined, wherever necessary, to ensure that
they contained at least 5 % of the observations (see Figure 6).
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Figure 8. Histograms of Ca(i)-
Ca(i � n) distances determined for
two structures of the N-terminal
domain of human serum albumin,
1bj5 and 1uor (shown in
Figure 1(a)). The histograms are
®rst taken with a bin width of
0.5 AÊ , then the bins are combined
so as to have at least 5 % of the
observations in each bin. The
resulting histograms are numeri-
cally shown in Table 3.
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