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Recent Progress in Protein 3D Structure Comparison
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Abstract: Quantitation of protein 3-D structure similarity is crucial in such fields as evolutionary studies, structural
modeling and prediction of biological function. There are various approaches, many of which are tailored to specific
problems. This review summarizes the recent developments in this field with particular interest in two main areas: i)
improvements to and statistical interpretation of the root-man-square distance between equivalent atoms, rmsd; and ii)
methods of protein structural classification based on geometrical features. Special attention is given to fast methods

capable of analyzing large structural databases.

I. INTRODUCTION

Recognizing protein pair similarity is of fundamental
importance in modern molecular biology. Traditionally, the
comparisons of protein three-dimensional (3D) structures
have been applied to evolutionary analyses [1-6] and to
evaluate structure prediction methods [7-10]. More recently
and largely because of the structural genomic initiatives [11],
macromolecular 3D structures are increasingly used to
predict detailed, biological information [12-16]. The simplest
and probably most promising approach to identify the
unknown function of a protein whose 3D structure has been
determined, is based on the search for similar 3D structures
of proteins with known and well characterized function.
Although the structural similarity cannot per se guarantee
that the function is the same, it can nevertheless reduce the
spectrum of possibilities. In the trivial case of two proteins
with very similar sequences, the structural determination is
even unnecessary since the simple analysis of the sequences
allows the detection of the homology. On the contrary, in
case of distantly related proteins, the sequence comparison
hardly allows the identification of similar proteins. The 3D
structure therefore becomes necessary: given that protein
spatial structures are more conserved in evolution than
amino acid sequences, it is much easier and more reliable to
detect 3D similarities.

The literature offers a very large number of examples in
which some insight into the biological function of proteins
has been reached through the analysis of the 3D structures.
An excellent example was recently given by Hilgers and
Ludwig, who determined the crystal structure of the quorum-
sensing protein LuxS from Bacillus subtilis [17]. The role of
this protein was largely unknown, though it was clear that it
is involved in intracellular signaling of bacteria [18] and is
expressed in most bacterial species for which complete
genome sequences are available.
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The determination of the 3D crystal structure of LuxS
allowed to propose that it is an enzyme catalyzing a
hydrolytic reaction, despite that it is significantly different
from any other protein fold, as evidenced by the DALI of the
TOP algorithms [19-21]. LuxS was recognized to be a
homodimeric protein, by considering the geometry of the
protein-protein interface [22] and the degree of sequence
conservation at the protein surface. The homodimeric nature
of LuxS was later confirmed by light scattering experiments.
Two metal biosites were recognized at the homodimer
interface. Given that the cation first co-ordination sphere was
formed by two His, one Cys and a water molecule, it was
proposed, and later confirmed by chemical analysis, that the
cation is a tetra-coordinated Zn(II) atom, probably functional
and not structural, because of the presence of the solvent
molecule coordinated to the metal cation [23]. A functional
Zn(II) cation is systematically associated with an acid-base
reactivity, typically in hydrolytic reactions of peptides and
amides. Close to the Zn(II) site, a substrate binding pocket
was identified by stereochemical and sequence conservation
analysis. The active site is quite small (90 A®) and a flexible
gate was proposed to allow the entrance of the substrate on
the basis of a simple analysis of the crystallographic B-
factors, which monitors the degree of fluctuations of the
atoms around their equilibrium positions.

In the case of LuxS, two main factors were essential to
deduce some biochemical insight into the enzyme role: (i)
the recognition of the homodimeric nature of the protein and
(ii) the identification of a functional Zn(II) biosite. Both
aspects were recognized due to the similarity between some
features of LuxS and of other protein 3D structures. The
LuxS protein-protein interface was compared to all the
known protein-protein interfaces and the metal biosite was
identified because of its apparent similarity with many other
Zn(II) biosites. The availability of rational databases and
descriptions of protein 3D structures were therefore essential
in deducing detailed biochemical features of LuxS.

Here some recent advances in the methods for comparing

overall protein structures are examined. The first section of
the review is devoted to the most recent improvements to the
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root-meian-square-distance (rmsd) between equivalent atoms,
computed afler optimal superposilion of a struclure over
another structure. Although rmsd is certainly the most
popular measure of structural similarity, it is often used
improperly because its actual meaning is rather obscure. The
second part of the review iz devoled 1o the ahernative
methods, based on the geometrical properiies, which have
been designed in order to make the browsing of very large
protem 30 structure ditabases possible,

1L SIGNIFICANCE OF RMSD

The statistical significance of the rmsd values has besn
investigated scveral times in the past, generally by analysing
distributions of rmsd values obtained by comparing selecled,
representative scts of prolein three-dimensional structures
|24-27). For example, it has been proposed that two
#tructural moieties are significantly similar if their rosd
value is considerably smaller than a reference value, which
discriminates the 1% of the most similar fragment pairs from
the remaining 99% of the less similar pairs [28]. Analogous
similarity scorea, based on the statistical distributions of the
rmsd values, have also boen used subsequently [29, 0.
Allernatively, adopting a lotally different approach, which
does not at all consider the distributions of the rmsd values,
it has been proposed [31] that iwo protein structures must be
considered rather similar i their rmsd is lower than (hat
oblained when ane of them is mverted.

IL.1. Feted e Protein Size

It iz only recently that the dependence of the rmsd on the
profein size has been addressed. although this problem was
alse implicit in several older papers. As an cxample, the
rredl threshold value able w discriminate the 1% of the most
similar fragment pairs from the remaining 99% of the less
similar pairs clearly depends on the protein fragment size
(sec Figure 1b in reference [29]). Maiorov and Crippen [32)
discussed the “often neglecied fact that Fmsd is allected by
both the conformational similarity and the overall sizes of
the proteins being compared”, They found an elegani way to
slandardize the measure of three-dimensional similarity.
Once two protein structures have been superposed and their
residues have been consequently aligned, a “sum™ and a
“difference™ structures are defined. If structure A is defined
by its a; positional vectors (i.c. the coordinates of its atoims)
and siructure B is defined by its b, positional vectors, the
positional vectors of the “sum™ struclure are defined as,

and the positional vectors of the “difference™ structure are
defined as,

: (2}

The similarity between the two structures A and B can be
micasured with plA,B)

Carupo aad Peager
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where R{dif) and R{sum) are the radii of gyration of the
“difference” and “sum™ structures, respectively. It can be
shown that p{A,B) can be computed as,

2rmsd(A,
p(AB) = — AR @

V2R%(A)+ 2R%(B) - rmsd (A B)

where rmisd(A,B) is the root-mean-square distance computed.
after oplimal superposition of the two structures A and B,
and R{A) and R{B) are the radii of gyration of A and [,
defined as .
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where r; denotes the distances from the contre of mass of the
i™ atom in either siruclure A or B.

An alternative measure of similarity (the relative rmsd),
unbizsed by the protein dimension, has been proposed by
Betancourt and Skolnick [33]. The simple ratio between the
Fmyd and the average rmsd for two random proieins with
equivalent dimensions is taken as the unbiased similarity
score. A falther similar approach to treat the dependence of
the rmsd on the prolein size has been adopled by Carugo and
Pongor [34]. A size-correcled rmsd was designed viz the
rmsdypy, 50 Lhat its value is the rovsd that would have been
observed if the two structures that are compared had 100
equivalent atoms. 180 non-homologous protein struciures
were selected, with very variable secondary structure content
and with very variable number of residucs. Each protein
struclure was superposed (o 400,000 of its variants obtained
by randomly shulfling its sequence (only the Crx atoms were
considered). As expecied, the 400,000 rmsd valucs were
distributed differently as a function of the length of the
protein. Lligher rmsd values were more frequently observed
for longer proteins (Fig. 1a). Also the maximal rmsd value of
the # mosl similar structure pairs was dependeni on the
protein length (Fig. 1a). Higher values of such a maximal
valiee were observed for longer proteins. The dependence of
such a maximal rmsd on the protein length was logarithmic
(Fig. 1b) and the exact shape of this curve was obviously
dependent on the arbitrary number o of the most similar
prolein pairs (Fig. 1¢). Nevertheless, by dividing these
maximal rovsd values by Fmzd)g, which is their value if’ the
protein contains 100 residues, a unique curve is obiained
(Fig. 1d). Eventually, it is possible to transfirm any rrd
inlo & normalized resd as

rmusid _ rmsd
~1.3+0.5In(N)- Hm\)’i
100

where ¥ is the number of fitled atoms. rmed, ppvalues arc,
therefore, the rmsd values that would be observed for 2 pir
of structures with 100 cquivaleni residwes.

rmsd,y, = (6)
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Fig. {1). a) Typical distribution of the roxd values obtnined by comparing a protein struchare with 400,000 of its variants obtained by random
shuffling s sequence. Larger values are observed monz frequently than small values, The disiribution depends on the dimension of the
protein. Larper savsd values are observed more frequently for barper proteing. The meximal rosd vales of the 2,000 best Diling comparisens
are indicaled. Ao (his muximal rmed valug depends on the dimension of the protein. Larger maximal rresd valoes are associated with larper
proteins. b} Dependence on the protein dimension of the maximal #msd vahee of the 2,000 best fitting comparizons. ¢) Dependenos on the
prodein dimension of the nsstimal resd valws of the X best Oitliep conparnisons, with X ranging from 40 w 2400, 2s ndicaicd in parentbeses
Tz el ypp walues ane mdicaied with snsall conply circles. o) The cerves ghowm in () oollapse inlo 2 single curee when they ane divided by
the rmgd,p vilues. The curve cam be fitled by an exponentinl function that ollows to compute the Fmad . onologoe of any resd value, see
cquation (&)
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The approaches presentcd above lead (o very similar
results. While equation (6) comes from a statistical analysis
of a large artificial database of 72 million structural
alignments (400,000 simulations for cach of the 180 non-
homologous siructures), equation (4) does not depend on a
statistical sampling. The apparent advantage of cquation (6)
consists in the fact that it is easier to use, since il does not
require the computations of gyration radii. Independently of
the superposilion method one decides to use, the rmsdie
values can he computed even manually.

T2 Core reesd and Overall reeed

Lesk and cu-workers [35] recently proposed an original
procedure aimed to (i) reconcile the various 3D superposi-
tion mcthods, which can actually disagres significantly if the
two proleins, which arc compared, are very different; and (i)
improve the understandability of the rmsd. The siralegy is
rather simple: 1) an initial superposilion is performed; 2) the
number n of equivalent residues and the corresponding rmsd
valee are recorded; 3) the worsi-fitting residue-pair is
eliminated; 4) the remaining pairs are re-superposed; 5) the
procedure is continued, iteratively, from step 2 until resd <
0,2 A. As less and less residues are considersd equivalent,
the rmd value decreases. The curve, obtained by plotting the
rmsd valoes compuled after each optimal superposition
versus the number n of equivalent residues found at cach
step, has a linear part, for small # values (ranging belween
the walues mf and #2, which vary from case (o case) that can
be determined by Fmsd = a + b and an exponential part for
nza?, that can be delermined by smsd —a + peinel!

The exponent of the latter equation perfectly fits with the
rmad of the Cix atoms within the core, if the latter is defined
&5 in Chothia and Lesk [36]. The considerable advantage of
such a procedure is thal it seems independent of how the
initial alignment is made. This is pariicularly interesting in
the case of very different prodein 3T structures the alignment
of which can be insccurate [37]. Moreover, the exponential
part of the fitting curve should allow one to easily identify
the similar ¢ore region in the two proteins that are compared,

1L PURELY GEOMETRICAL AFFROACHES

Fast procedures able to recognize protein pair similarity
amdl, consequently, to allow classification and calegorization
on the basis of the alomic co-ordinales are pecessary since
they are independent of the protein scquence and can
complement sequence analysis in order to better distinguish
homology (divergent evolution) from analogy (convergent
evolution). A number of 1echniques have been developed to
solve that task and research in the field is still very popular
becausec of the need to explore large databases of
macromolecular 3D structures, Some approaches wers
developed 20-30 years ago when only a [ew protein 3D
siructures were known [26, 38-40]. There are now more than
17,000 macromolecular 3D structures in the Protein [Data
Bank [41, 42]. This number will surely increase to a great
exlenl in the near future as a consequence of (he numerous
ongoing structeral genmomics initiatives [11]. Quite a
subslantial progress has recently been reporied in the

{arngo and Pomgor

putomatic comparison of protein 30 geometry [43]. The
approach closcly resembles another, fast method proposed
subsequently [44], which will be described in some detail in
the next paragraph.

HLY. Profein Structural Distance

A method based only on geometfric consideration has
been developed in order o speed up the comparison of a
protein 30 structure with large databases of prolein 3D
structures [44]. It consists of two main, successive steps, (i)
the alignment of the sccondary siructure elements. and (i)
the alignment of the Crx atoms. The [irst step allows one to
filter a protein 3D struciure database, in order o fish out 2
limited sel of entrics potentially similar to the query
struciure, and provide an initial Cre atom alignment. Thiz is
subsequently refined in the sccond slep,

Secondary siruciural elements are defined with DSsP
|45] and ihe dynamic programming procedure of Needleman
and Wunsch [46] is applicd to a similarity matrix whose
elements monitor the similarity between pairs of secondary
structure elements in the two protein 3D structurcs which are
compared. Small gap penalties are used in order to casily
allow insertions and deletions. For example, given Iwo
structures A and B, the similarity Spe between the two
secondary structural elements § and m of A and the two
secondary structurzl elements j and & of B is delined s

1.7
g |0 (ﬂ} 5 ™
=\ 24 )d, —d, |). 8

where the numerical constants have been empirically chosen,
o and oy, are the distances between the secondary structural
elements @ and m of structure A and § and » of structure B,
and & is a discrete function described below.

The angle between Iwo secondary struciural elements is
defined as the angle between the two vectors (from N- 1o C-
terminus) fitting each secondary struclural element. In
accordance with oy, and . .i.e. the angles between the
secondary struclural elements i and m of siructure A and )
and n of structure B, the discrete function § can assume the
following values (and is of course null in case the secondary
structure types of i and m and of and j and n are different)

=2 0f| g - O | = 40°
8= 1 if40° £| G = X | < 807 (&)
fi= 0| Ty - 0 | 2 B
The distance between (wo secondary structural elements
and m {or j and ) containing /, and [, residues, respectively,
is given by
4
Er|1:i.1'|I{.|r;,“,.u,r,,...,p:rH )]

4 = A=
A T (%)
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where a, is the distunce between residve x of the secondary
structural elements @ and residue y of the sccondary struciural
eleiments m.

On¢e the equivalences among the secondary struciuril
elements of the two structures have been found, the Coo
atoms are aligned with an algorithm similar to STAMP [47]
which is a combination of dynamic programming and rigid-
body superposition, performed with the very popular
algorithm of Kabsch [48, 49]. The initial Ca atoms
alignment, which must be as accurate as possible in order to
ensure lhe convergence towards the final alignment, is
obtained from the initial alignment of he secondary
structural elemenis, by assuming that the small subset of
residues with similar solvent accessibility within the aligned
secondary structural clements are equivalent. The two
structures are then superposed according o such an
alignment and the similarity between residucs is defined as

5, (n+ I].—Sij{ﬂ}+i (1)
miax (. 1)

where o, is the distance between the Co-s of residues ¢ and j,
Sy(n) is the initial similarity belween residucs i and j and
§,{nt1} is the similarity between the same (wo residues afier
rigid-body superposition. By processing such a similarity
matrix with the Needleman-Wunsch algorithm [46], & new
alignment is obtained, a new rigid-body superposition is
performed, Lhe new similarity scores Sy are computed and re-
analyzed by dynamic programming. About ten iterations arc
needed until a convergence of the rmad is reached.

Given that the procedure described shove consists in two
sleps, ie. the alignment of the secondary structural elements
and the alignment of the Cor atoms, the overall similarity
between two prolein 300 structures, the protein structural
distance (P50, is given by a mixiure of the goodness-of-fits
of the two alignmenl Lypes

log e
max(a,b) ) s(A,A)
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the alignmenl score with respect to one of the two protein
which are compared. The ratio a/max{a, &) makes the PSD
symmetrical, so that PSINAB) = PSINE AL

The P50 score™s ability to identify structural similarities
when a query protein 30 siruciure i3 compared to a structural
database has been analyzed statistically. An all-versus-ull
comparison of 1226 structures of the SCOF collection of
protein domains [5] was very salisfactory and reasonably
fast. About 20 seconds were neccssary o compars
myoglobin (153 residues) to the representative set of 1226
proteins and the amount of errors, i.e. the entries incorrectly
declared similar or dissimilar to the gquery 3D structure, wis
guite modest. Very severe discrepancies wilh SCOP werce
observed only in 0.1% of the comparisons. There were
nevertheless significant differences hetween the classifica-
tion of protein siructure of SCOP and the classificalions
oblained on the basis of the P50 scores. Amongst the
various justifications for these inconsistencics, one is of
primary relevance, While as the SCOP hierarchical organiza-
tion iz based on both sequence and 3D structure information,
PRD derives from a purely peometrical analysis. Moreower,
while SCOP requircs some human decisions, which can be
variahle from case lo case, S0 results from an automatic
procedure, It must also be noted that while SCOF assumes
the discontinuity from fold to [old, so that there arc regions
of the fold space, which cannot be occupied by any stable
protein, the PSD scores apparently suggest that there is some
continuity in the conformational space: [44].

111.2. Comparison Without Alignment, FRTDE

Traditionally, the similarity belween two protein 3D
structures is evaluated by an analysis of inler-atomic
distances [19, 40, 50] or by rigid-body superposition [51-53).
These methods have both advantages and disadvantages. On
one side, when the co-ordinates of the Ca aloms are
considercd, they allow the 310 alignment of the residues,
with a significant improvement in the sequence alignment

PSINAB)=1- )

where @ and b are the number of secondary structural
clements of proteins A and B, respectively, s{A.B) is the
secondary structural element alignment score for comparing
protein A lo profein B, (A A) is the anulogous score for
comparing protein A with itsell, and x and y arc adjustable
parameters thal should be close to 3 and 5, respectively.
Their role is to weight the relative importance of the two
addends which define the PSD, the Nrsl measuring the
alignment of the secondary structural elements and the
second reflecting the alignment of the Co atoms. The ratio
sCA LW AL A), which ranges between {0 and |, normalizes

I o

(11}

¥

quality. This is particulerly important given that only the
alignment bascd on the 3D struclures allows onc to find
correcl residucs cquivalencies in case of very distantly
related proteins. Aboul Iwice as many distant homologous
prolein pairs were detected by Levitt and Gerstein with the
iD alignments rather than with sequence alignments [54].
Analogously, only 10% of known relationships in FDB [41,
42] were detected with BLAST [55] by Brenner ef ol and
many of them were undetectable even with the more
sophisticated PS1-BLAST procedure [56], which builds and
uses profiles for a centain family [37].



44 Correni Protein and Pepide Sciewee, 2002, Vel 2, o, 4

Mevertheless, the 3D alignment of a pair of protein 3D
structures becomes computationally rather expensive and
partially unreliable when the two proteine are very different

PRIDE(AA)-1.
PRIDE(AB)E0
PRIDE(AR)=PRIDE(BA)

(1-PRIDE(AC)) < (I-PRIDE(AD)) {1-PRIDE(BC))

in shape and size [37]. Sippl and co-workers have recenthy
digcuszed this point in greal detail [58]. They compared the
results of the rigid-body superposition program ProSup [59]
with those of several, other procedures like VAST [60],
DALL [19], and CE [37]. 10 well-documented “difficult™
profein pairs [61, 62] were examined. In all cases, signilicant
differences were observed amongst at least taro procedures.
The cxtreme discrepancy was observed in comparing the
canine granulocyle colony-stimulating factor (PDB
identification code lbge, chain B)[63] with the human
granulocyte-macrophage colony-stimulating factor (PDB
identification code Zgmfl, chain A) [64]. ProSup found 87
cquivalent residucs that were totally different from those
found by WAST, DALL and CE which lound alternative 71,
24, and 107 equivalent residues, respectively.

A novel method to compare protein 31 structure pairs
without supcrposing them or aligning their egquivalent
residues has recently been proposed (Fig. 2) [65]. The
FRIDE score (PRObability of TDentity) iz based on a
gimplified protein 3D strocture representation. The Coadi)-
Colita) distances are computed and their distributions arc
stored. The integer n varies from 3 to 30 and indicaies the
sequence distance between the residucs § and i+n. Each 3D
structure is therefore, chorscierized by 28 histograms, gach
describing the distribution of the distances between Co
atoms separated by 3.4,...30 residues. When iwo prolein 30
structurcs arc comparcd, cach pair of these 28 histograms is
vompared wsing conlingency table analysiz [66], a very
robust and model-free statistical tool, resulting in 28
“probability of identily™ values. Their average iz then
defined as PRIDE; its valuz ranges from 0 (totally different
3D structures) o 1 (identical 30 structures), Through an all-
wersus-gll comparizon, the PRIDE scores have been shown
o be able to recognize ihe level of similarity among the
pratzin domains classified in the CATH database [6).

Two important features of PRIDE are noted. (1) It is
intuitively more understandable then other measures of
similarity, since il has both an upper and a lower limit {1 and
0, respectively) and it indicates a probability, a concept
easily appreciable also to non-specialists. (ii) Tt is very fast.
Once the 28 histograms per cach structure have been
compuled and stored, like one must do when scanning a
large database of protein 30 structures, 40,000 struciural
comparisons can be performed in about 37 scconds with a
slmple SGI RI0000 processor.

Anather relevant feature of PRIDE is that it is 8 metric in
the matkematical sense. Given three structures A, B, and C,

Caruge and Pongor
the [ollowing properties are crucial if PEIDE 15 o be used in
automatic structure classification:

{identity) (12)
(posilivily) (13}
(symmietry) (14)
(irangular inequality) (15

Since protein similarity/'distance measures are ollen wsed
in conjunction with cluster analysis and other multivariate
statistical techniques, it is worlth while 1o point oul that
PRIDE (or its complementary, |-PRIDE) posscsscs the
metric properties {equations 12-15) reguired Tor such
caleulations, These metric properties are not always found in
other 30 similarity scores. For example, the rmsd has been
shown to obey the triangular inequalily [67], but this is frue
anly for very similar structores that can be superposed
uwiambiguously.

COMCLUSIONS

This review describes recent trends in assessing the
similarily of prodein 31 siructures. The dependence of root
mican square distance, rmsd, on the protein dimension has
received considerable atiention. Three independent
alternative similarity measures, the so-called p (cquation 4,
[32]). the relative rovsd [33], and the rmsdise (equation
6,[34]) scores have been proposed to make the similarity
mecasure independent of the dimension of the proleins
compared., Furithermore, a simple and elegant procedure has
been designed to distinguish the overall rmsd from the rmsd
of the protein core [35]. This is particularly important when
the two proteins, which are compared, are considerahly
different from cach other, since in this case the overall
similarity can greally vary depending on the method of
comparison, and also, totally different three-dimensional
alignments are possible. The possibility 1o reliably measure
the core rmsd, on the other hand, should help in defecting
bow similarily degress,

Considerable interesi has been devoted to the
development of methods, which are based on purely
geometrical criteria and may therefore allow an automated
classification or categorization of protein 30 siruciures
independent of the aming acid sequences. These methods are
particularty needed in developing profein domain databases
that can be used in homology modeling or fold recognition
provedures [68], The PEDY score [44] 5 compuied in bwo
steps, an initial alignment of sccondary structural elements
lollowed by an alignment of the Oz pozitions. The PRIDE
score [65] is bascd on the comparison of the length
distribution of the Co-Ciox distances, This comparison is very
fast but docs not provide a 30 alignment of discrete residus
pairs. Despite their conceptual simplicity, both P50 and
PRIDE have been shown to compare well with knowledge-
bazed protein ol classifications like CATH [8] and SC0OP
[3].
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Taa2 (3-107) Ibhd(151A-2524)

n=3 P=0.86

P=0.49

1 1 1 1
- 1 15 0 25 30

Fig. (2). An example of the procedure that compares two protein structures through the analysis of the distributions of the Ca(i}-Cw (i+n)

distances. The calponin homology domains of the human beta speetrin ( 12a2, residues 3-107) [69] and of the human wirophin (1bhd, residues

151-252 of the chain A) |70] anc considered (lop; fipure prepared with Molscript [71]. The distances Coi-Co (7+4) ane computed for 3 <=n s

30, Two distributions of these distances are shown (middie) for m = 3 and o= 30. By oontingency table analysis it is possible fo estimate thal

the pair of distributions nssocinted with m =3 have 86% of probability to be identical. The probability that the other two distributions are

identical is lower, 49%. All the 28 probability walues for 3 < r < 30 ane computed. They are plotted versus a (bottom). Their mean value,
+PRIDE, is 0.86. The two CH domains have terelore 85% of probability to be identicnl.
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The recent progress in assessing the similarity between
protein 30 structures has been characterized, in our view, by
a reemergence of familiar concepts as parts of new
stralegies, As the concept of similarity is an intuilive one, we
can cxpect that this trend will continue. Tifferent aspects of
protein 3D struclures may be relevant to the various
biological problems, so the need for alternative similarity
measures will probably continue. The current paradigm is
largely determined by struclural genomics and the necessity
to predict biological lealures from structural data Within
this scenario, the mainstream will probably move owards
fast methodologics and, possibly, (o mulli-steps procedurcs
in which the target will be reached by successive application
of increasingly selective and compute-intensive sleps.
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