
The Pin2 genes encode potato type II

proteinase inhibitors that act against

pathogenic attack. The first examples were

found only in the Solanaceae family, but,

using new EST and genomic data, we have

found 11 homologous genes dispersed

through almost the whole range of 

mono- and di-cotyledonous plants.

In contrast to the repetitive precursor

sequences of the Solanaceae Pin2 genes,

the new homologs have only a single repeat

unit. The gene family appears to have

evolved from a single-domain ancestral

gene through a series of gene-duplication

and domain-duplication steps. A number 

of unequal cross-over and gene conversion

events could explain the current gene and

domain pattern of the Solanaceae Pin2

subfamily.
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The Pin2 family of proteinase inhibitors is
present in seeds, leaves and other organs
of the Solanaceae. Perhaps the best known
representatives are the wound-induced
proteinase inhibitors [1,2], which contain
up to eight sequence-repeats (the
‘IP repeats’) coded by the second exon of
the gene (e.g. [3]). The 3D structure of the
mature inhibitor from potato is known [4],
and recently it was shown that some
engineered Pin2 precursors are able to
form a circularly permuted structure [5–7]
that was thought to correspond to the
ancestral, single-repeat protein of this
family. Subsequently, a naturally

occurring Pin2 protein, PSI-1.2, with this
‘ancestral’ circularly permuted structure
was isolated [3]. Circular permutation of

sequences had been reported in other
cases (for reviews see [8,9]). But until 
the discovery of PSI-1.2, circular
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Fig. 1. The domain structure of the potato type II proteinase inhibitor (Pin2) family of precursors. The inset shows the
consensus protein structure. IP1...IP8 designate the total number of IP repeats (green boxes) within each precursor.
The IP1 molecules were identified while searching genomic databases for the purposes of this review (sequences
shown in Fig. 2). Yellow box, signal peptide; black vertical lines, Cys residues; gray lines, sequence identity (>98%).
The presence of adjacent, identical repeats is a recurrent pattern. PSI-1.1 [17] PSI-X (N. Antcheva and S. Pongor,
unpublished) and PSI-1.2 [3] are paprika seed inhibitors, the gene corresponding to the major seed inhibitor PSI-1.2 
is unknown. See Fig. 3 and Supplementary Material for the gene accession numbers.



rearrangements were observed only
between species, such as favin from
Vicia faba and the lectin concanavalin A
from Canavalia ensiformis [10] or the
plant aspartyl proteinases and human
lung surfactant proteins [11]. PSI 1.2 is
the first example where circularly
permuted members of a protein family are
expressed within the same organism,
moreover, within the same organ. As both
proteinase inhibitors and lectins are
proteins that have roles in the defense
mechanisms of plants, it is tempting 
to speculate that the underlying
sequence-rearrangements are part of 
a general scenario by which plants
produce functional diversity against
pathogenic attack.

Based on the sequences of cDNA and
genomic clones, 18 members of the Pin2
family have been annotated so far in the
main protein and DNA databases. While
reviewing the precursor architectures of
the Pin2 family (Fig. 1) and scanning the
new genomic and EST databases with
sensitive BLAST-based algorithms [12,13],
we found 11 hitherto unannotated members
of the Pin2 family in eight different
monocotyledonous (Oryza indica ssp.,
Oryza japonica ssp., Zea mays
and Sorghum halepense) and
dicotyledonous (Arabidopsis thaliana,
Medicago truncatula, Mesembryanthemum
crystallinum, Solanum tuberosum) 
plants (Fig. 2). It thus appears that the
Pin2 family is more widespread than
previously thought. And, in contrast to 
the repetitive precursor sequences found
in the Solanaceae, nine of the novel genes
are composed of a single repeat unit, 
as was previously predicted for the
ancestral gene [5–7].

The architecture of the Pin2 genes
(Fig. 1, inset) is conserved: the first exon
encoding the N-terminus of the signal
peptide, and the second, major exon
encoding the C-terminus of the signal
peptide and a variable number of
IP repeats, are always separated by a
type I intron of 100–200 bp. However, 
the sequence of the IP repeats is quite
variable, only the cysteines constituting
the four disulfide bridges and a single
proline residue are conserved throughout
the 77 known repeat sequences
(a multiple alignment is deposited as
Supplementary Material at
http://www.abc.hu/pin2).

Duplication of Pin2 genes seems to
have occurred several times, especially

within the Solanaceae. Outside the family,
the ice-plant is the only known example 
of gene duplication, the other genes are
apparently present in a single copy in the
haploid genome.

The comparison of repeat sequences
(Fig. 3, Table 1) shows two types of cluster.
First, there is a clustering according to
repeat number; for example, repeat 
2 of a gene can be similar to repeat 2 of
another gene. This suggests that the
multiplication of repeats (repeat
expansion) within exon 2 preceded gene
duplication. Second, repeats within the
same gene are very similar to each other,
which could be caused by fast repeat
expansion from a single IP repeat or by a
uniformization of the repeats by such
mechanisms as gene conversion [14] and
unequal cross-over (UECO) [15]. The
latter possibility is more likely because the
duplication is known to be a rare event.

The mechanism of repeat expansion
has not been studied in detail. However, 
it is conspicuous that the Pin2 precursor
architectures – and especially the
pattern of repeat identities shown in
Fig. 1 – can be reconstructed by a series
of putative UECO within exon 2 (Fig. 4).
UECO is well known for genes and has
been invoked to explain recombination of
introns [16]. The peculiarity of this case
of UECO is that the repeats that
proliferate within the same exon
constitute individual folding units, 
and that virtually all the precursor
architectures can be explained by the
mechanism. We note that repeat
expansion seems only to have 
occurred within the Solanaceae, 
as the genes of other families all code
single-repeat proteins. This leads us to
suppose that the accelerated evolution of
this gene might have been triggered by
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VACPQYCLE-VDYVTCP-SSGSEKLPA-RC-NCCLAP-KGCTLHLSDGTQQTC
VACPQFCLD-VDYVTCP-SSGSEKLPE-RC-NCCMTP-KGCTLHLSDGTQQTC
IACPLYCLQ-VEYMTCP-SSGADKLPP-RC-NCCLAP-KNCTLHLSDSTTIHC
TACHEICYVDAAYMTCP-STGYQHLAP-KC-NCCEGG-PGCSLYRANGEQI-C
TICLQICYTDADYMTCP-STGYKKLNP-AC-NCCIGG-PGCSLYRANGEQI-C
QICPQICYIEAAYMLCP-STGDQQLTP-EC-NCCEAG-PGCSLYEADGKKI-C
KFCPQFCYDGLEYMTCP-STG-QHLKP-AC-NCCIAGEKGCVLYLNNGQVINC
KICPQFCYDSVAYMTCP-SSGDQHLTP-KC-NCCLAS-TGCILYEADGTPI-C
QICPQFCEPNVDYMTCS-SSGSTILRP-TCINCCQARGRGCQLFRRDGSAI-C

KACTMECDPRVAYMICP-SSGLAKLSQ-VCVNCCTAG-DGCKLYGYDGSLI-C
KACTLECDSRVSYMTCP-SSGMAKLNQ-VCVNCCTAR-EGCKLYGHDGSLI-C
KPCTMECG-HLGFGICPRSQG-SPQNP-ICTNCCSGF-KGCNYYSVNGTFI-C
KACTKECG-NLGYGICPRSEG-STENP-ICTNCCAGY-KGCNYYSANGIFI-C
KPCPLNCDPHIAYSKCPRSGGKTFIYPTGCTTCCTGY-KGCYYFGKDGKFV-C
KACPRNCDPHIAYSKCLRSRGKTLIYPTGCTTCCTGY-KDCYYFGKDGKFV-C
  *   *     :  *  * *        * .**     .*  .  :.    *

Sorghum halepense, sorghum IP1-AI724716
Zea mays, maize IP1-AI947362

Arabidopsis thaliana, thale cress IP1-AI999664
Mesembryanthemum crystallinum, ice plant IP1-BE033392
Mesembryanthemum crystallinum, ice plant IP1-BE033692
Mesembryanthemum crystallinum, ice plant IP1-BE033653

Oryza sativa, rice IP1-AU163886
Medicago truncatula, barrel medic IP1-BE942349

Solanum tuberosum, potato IP1-BI434643

Lycopersicon esculentum, tomato IP3-BI421162-R3
Solanum tuberosum, potato IP3-BI436259-R3

Lycopersicon esculentum, tomato IP3-BI421162-R1
Solanum tuberosum, potato IP3-BI436259-R1

Lycopersicon esculentum, tomato IP3-BI421162-R2
Solanum tuberosum, potato IP3-BI436259-R2

Fig. 2. Sequences of potato II type proteinase inhibitor (Pin2) homologs found in the EST databases of ice plant
(EMBL accession number: BE033392), rice (EMBL accession number: AU163886), barrel medic (Medicago truncatula)
(EMBL accession number: BE942349), sorghum(EMBL accession number: AI724716), maize (EMBL accession
number: AI947362) and Arabidopsis thaliana(EMBL accession number: AI999664). The A. thaliana EST-sequence was
also found in the genomic sequence of chromosome 1 of A. thaliana [18], the rice EST sequence was found in both
recently published rice genomes [19,20]; both genes are apparently present as a single copy within the genomes.
IP indicates the total number of repeats within the gene, R indicates the serial order of the repeat starting from the
N-terminus. The multiple alignment was produced by the CLUSTAL program [21] (see Supplementary Material at
http://www.abc.hu/pin2). The proteinase-contact residues P1 and P1′ are highlighted in green, 100% conserved amino
acid positions (yellow) are marked with asterisks, double or single dots mark conservative and semi-conservative
amino acid substitutions, respectively [21].

Table 1. The distribution of the proteinase contact residues P1 and P1′ ′ ′ ′ within the clusters
a

Cluster P1 P1′′′′

No. (Fig. 3) Type Basic Acidic Hydrophobic Polar Acidic Hydrophobic Polar

1 R3 40% 40% 20% 100% E
2 IP1 10% 10% 10% 70% 90% 10%
3 R2 23% 46% 15% 15% 85%
4 R1 69% 31% 100% E
5 IP3 78% 22% 33% 11% 55%
6 N. alata, 75% R 25% L 100% N

N. glutinosa
All 53% 1% 34% 3% 28% 16% 56%

aThe amino acid types were as follows: basic, R, K; acidic, E, D; hydrophobic, L, I, F, V, M; polar, N, S, T. The
amino acids not listed did not occur in the two positions, the conserved amino acids are explicitly indicated.
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Cluster 6
R1–R8 repeats of N.alata and N.glutinosa
(genes of 4 to 8 repeats)

Cluster 5
R1–R3 repeats of Solanaceae
(genes of 2 to 3 repeats)

Cluster 4
R1 repeats of Solanaceae
(genes of 2 to 3 repeats)

Cluster 3
R2 repeats of Solanaceae
(genes of 2 to 3 repeats)

Cluster 2
Single-repeat genes found
also outside the Solanaceae

Cluster 1
R3 repeats of Solanaceae
(genes of 3 repeats)

Fig. 3. Clustering of the DNA sequences coding for IP repeats. The sequences were clustered using the CLUSTAL program [21]. IP indicates the total number of repeats within the
gene, R indicates the serial order of the repeat starting from the N-terminus. Brown, tobacco (N. tabacum; IP3; N. alata: one IP4, one IP6; N. glutinosa: one IP6, one IP8); blue,
potato (one IP1, six IP2, one IP2+); red, tomato (two IP2 three IP3); green, paprika (two IP3′, two IP3); black, non-solanaceous plants (three IP1 in ice-plant, one IP1 in the others).
Table 1 shows the distribution of the proteinase contact residues P1 and P1′ within the clusters.



an initial repeat multiplication that
occurred in ancestral Solanaceae.

The impressive variability of the Pin2
genes in Solanaceae can be understood 
by comparing the proteinase contact
residues that are the major determinant 
of the specificity of proteinase inhibitors
(see Supplementary Material at
http://www.abc.hu/pin2 for details). First,
the ancestral single-repeat proteins have
a different specificity to the multirepeat
Solanaceae proteins. Second, the repeat
units within the multi-repeat proteins
have different specificities, so a mature
protein represents a mix of inhibitors. 
It thus appears that, in response to
pathogenic attack, plants resort to
protease inhibitor cocktails similar to
those used to fight retroviral infections in
humans. The Pin2 genes are part of the
plant’s innate immune response, which 
is in general characterized by broad
specificity. UECOs and gene conversions
seem to be plausible mechanisms both for
generating and for fine-tuning this broad
specificity against various pathogens.
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Fig. 4. Some of the potential unequal cross-over (UECO)
events that explain the emergence of sequence identity
patterns of the potato II family precursors (Fig. 1. and
Supplementary Material at http://www.abc.hu/pin2).
The two partners are colored green and brown. Two
types of UECO event involving either adjacent (Ri × Ri+1)
or nonadjacent (Ri × Ri+2) repeats are shown by dashed
lines. Gray lines indicate sequence identity (>98%). The
IP1 type structure that corresponds to the homologs of
the putative ancestral gene (Fig. 2), can arise as a result
of various UECO events. For example, as the PSI-1.2
protein is similar to the R3 repeats [3], it could have
emerged from the Ri × Ri+2 type recombination of two 
IP3 genes. IP5 type products have not been observed,
but their putative Ri × Ri+1 type recombination products
are found in N. alata (bottom). In similar manner, the IP6
and IP8 type products found in N. glutinosa (Q9SDW7
and Q9SDW8, respectively; Fig.1, bottom) could have
emerged from a putative IP7 protein as a result of an
UECO type event (not shown).
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