Non-Random Features of Loop-Size Chromatin Fragmentation

Ildikó Szilágyi,1 Tamás Varga,1 Lóránt Székvölgyi,1 Éva Hegedüs,1 Katalin Goda,1 Viktória Kaczur,1 Zsolt Bacsó,1 Yuji Nakayama,4 János Posfai,2 Sándor Pongor,3 and Gábor Szabó, Jr.1*

1Department of Biophysics and Cell Biology, University Medical School of Debrecen, 4012 Debrecen, Nagyerdei krt. 98, Hungary
2New England Biolabs, 32 Tozer Rd., Beverly, Massachusetts 01915
3ICGEB-Area Science Park, Padriciano 99, 34012 Trieste, Italy
4Lawrence Berkeley Laboratory, 1 Cyclotron Rd., University of California, Berkeley, California 94720

Abstract

Upon isolation of DNA from normal eukaryotic cells by standard methods involving extensive proteolytic treatment, a rather homogeneous population of loop-size, double-stranded DNA fragments is regularly obtained. These DNA molecules can be efficiently end-labeled by the DNA polymerase I Klenow fragment, as well as by a 3'- to 5'-exonuclease-free Klenow enzyme, but not by terminal transferase (TdT) unless the ends have been filled up by Klenow, suggesting that dominantly 5' protruding termini are generated upon fragmentation. The filled-up termini were used for cloning the distal parts of the ~50 kb fragments. BLAST analysis of the sequence of several clones allowed us to determine the sequence of the non-cloned side of the breakpoints. Comparison of 25, 600 bp-long breakpoint sequences demonstrated prevalence of repetitive elements. Consensus motives characteristic of the breakpoint sequences have been identified. Several sequences exhibit peculiar computed conformational characteristics, with sharp transition or center of symmetry located exactly at the breakpoint. Our data collectively suggest that chromatin fragmentation involves nucleolytic cleavages at fragile/hypersensitive sites delimiting loop-size fragments in a non-random manner. Interestingly, the sequence characteristics of the breakpoints are reminiscent of certain breakpoint cluster regions frequently subject to gene rearrangements. J. Cell. Biochem. 9999: 1–13, 2003. ß 2003 Wiley-Liss, Inc.

Key words: apoptosis; chromatin; fragmentation; fragility; terminal transferase; Klenow; 50 kb

Routine procedures of DNA isolation involving extensive proteolytic digestion of cell lysates, phenol extraction, and ethanol precipitation usually yield DNA of ~50 kb average size. Since fragmentation of DNA can be avoided when live cells are embedded into agarose plugs prior to lysis, mechanical factors are generally believed to play the primary role in this loop-size fragmentation observed when lysis is performed in a cell suspension. Based on this view, random breakage of the long DNA molecules would be expected. Several observations, however, run counter to this view: the average size of DNA molecules obtained during protein denaturing treatments of lysates prepared from normal cells without embedding is always around ~50 kb (forming in some cellular systems, a rather well-focused band, unexplained by a compression artifact, see Szabó et al., 1990); loop-size chromatin fragmentation can also be observed upon rapid alkaline lysis of live cells in suspension [Szabó and Bacsó, 1996], and when DNA is isolated from fixed cells [Gál et al., 2000]; this phenomenon has also been demonstrated when agarose plugs containing deproteinized chromatin of mammalian or yeast cells are melted to 60–85°C [Varga et al., 1999]. Based on the stepwise, large-scale chromatin fragmentation observed upon digestion of

Abbreviations used: PFGE, pulse field electrophoresis; FIGE, field-inversion electrophoresis; TdT, terminal deoxynucleotidyl transferase; ss, single-strand; ds, double-strand

Grant sponsor: xxx Q1; Grant numbers: OTKA 032563, OMFB-02692/2000, ETT T01/103.

*Correspondence to: Gábor Szabó, Jr., Department of Biophysics and Cell Biology, University Medical School of Debrecen, 4012 Debrecen, P.O.B. 39.
E-mail: szabog@jaguar.dote.hu

Received 23 October 2002; Accepted 5 May 2003
DOI 10.1002/jcb.10591
Published online 00 Month 2003 in Wiley InterScience (www.interscience.wiley.com).

© 2003 Wiley-Liss, Inc.
isolated nuclei with endogenous nucleases and after treatment with topoisomerase II poisons it was suggested that chromatin loops contain approximately 50 kbp of DNA [Kokileva, 1988; Filipski et al., 1990]. The size distribution of the DNA in the experiments above are reminiscent of the early stages of chromatin fragmentation generated by apoptotic nucleases [Oberhammer et al., 1993]. A common denominator of these findings may be the unique fragility of chromatin at predilection sites marking loop-size regions. The mechanism responsible for the generation of loop-size fragments may involve nucleases operating at hypersensitive sites, similar to the models explaining apoptotic DNA degradation phenomena, or an abrupt release of torsional stress becoming manifest at the bases of chromatin loops upon deproteinization. Characterization of these predilection points might be useful for understanding how apoptotic DNA fragmentation is superimposed on analogous phenomena observed in non-apoptotic cells. Certain aspects of chromatin structure may also be reflected by the phenomenon studied, in view of the fact that loop-size fragmentation accompanying apoptosis is thought to reflect the loop-level of higher-order chromatin organization [Razin et al., 1991; Oberhammer et al., 1993; Gromova et al., 1995; Lagarkova et al., 1995; Khodarev et al., 2000]. Furthermore, molecular analysis of the breakpoints involved in ~50 kb fragmentation could perhaps open up leads to the possible relationship between these fragile sites and the hot-spots of pathological gene rearrangements.

Degradation of DNA into megabase, and/or ~50 kb, loop-size, discrete fragments, ultimately to form an oligonucleosomal ladder (for review see Nagata, 2000), are frequently observed gel electrophoretic symptoms of apoptotic cell death. The free DNA termini generated upon chromatin fragmentation can be usually detected via end-labeling by terminal transferase (TdT) or by the E. coli Klenow enzyme. Degradation of DNA upon apoptosis may be part of the physiological program evolved to get rid of potentially harmful cell debris. On the other hand, maintenance of DNA integrity is a key element in the faithful propagation of genetic information, and is, therefore, carefully guarded against environmental and endogenous challenges by an elaborate machinery of DNA repair and checkpoint control. Unrepaired discontinuities may ultimately invoke cell death programs. In a series of studies, chromatin-bound nucleases were suggested to carry out the ≥50 kb cleavages, while soluble enzymes were implicated in the oligonucleosomal fragmentation steps [Pandey et al., 1994, 1997; Liu et al., 1998, 1999]. Others have demonstrated the role of a caspase-activated DNase (CAD) in both steps of DNA degradation [Sakahira et al., 1998]. Reconciliation of these and many other disparate findings may be through the consideration of complexity, assuming that several different nucleases may be responsible for the different aspects of DNA fragmentation, and that the fragmentation phenomena observed in the chromatin derived from apoptotic cells may be superimposed on a vulnerability already present in the chromatin of normal cells.

We addressed the question whether the ends of the ~50 kb fragments generated upon isolation of DNA from normal eukaryotic cells by standard methods involving proteolytic treatments possess distinctive features. First, the end-labeling characteristics of the fragments were studied, using urea-TAE agarose denaturing gel electrophoresis. A dominantly 5’-prominent end configuration was determined, and this feature made the cloning of the ~50 kb end-sequences possible. The sequences of several clones were determined and compared with each-other, and with the databank sequences.

METHODS

Cells

The HL60 (human promyelocytic leukemia) and the Jurkat (human T cell lymphoma) cell lines were maintained in RPMI 1640, the NIH 3T3 (mouse fibroblast) cells were maintained in DMEM. Both media were supplemented with 20 mM glutamine, 10% fetal calf serum (Gibco BRL), and antibiotics. The cells were washed twice with PBS (phosphate-buffered saline, pH 7.4) before further processing.

DNA Preparation

At a concentration of 10^7 cells/ml, the cells were resuspended in TE (10 mM TRIS-HCl, 1 mM EDTA pH 8.0) containing 1 mg/ml Proteinase K (PK, Sigma Chem. Com., molecular biology grade, self digested), Sarkosyl (N-lauroylsarcosine Na-salt, Sigma), and 20 mM EDTA. After incubation at 55 °C overnight, the samples were diluted 5× with TE then fresh PK (to 0.5 mg/ml) and SDS (sodium dodecyl sulfate,
Sigma; 1%) were added for a second cycle of digestion. The samples were then extracted with phenol/chloroform, precipitated with ethanol, and redissolved in TE.

Enzyme Reactions

Terminal deoxynucleotidyl transferase (TdT), Klenow, and the Klenow exo- fragment of DNA polymerase I were purchased from New England Biolabs and used at 25, 5, and 5 U/ml concentration, respectively. The restriction enzymes were from Amersham. α-[32P]dATP (110 TBq/mmol) was from Izinta Trading Co., Ltd., Hungary. The protocols suggested by the manufacturer were followed. Labeling reactions using the Klenow enzymes were performed in the presence of dGTP, dCTP, dTTP, and α-[32P]dATP. In the case of the TdT reactions, unlabeled dTTP and dGTP were included in the reaction mixture along with α-[32P]dATP. The unincorporated nucleotides were removed by gel filtration on Sephadex G25 columns (Pharmacia Biotech).

Gelelectrophoresis and Autoradiography

Samples containing 1 μg DNA were loaded in the appropriate sample buffer onto 1% agarose gels that were run at 6–8 V/cm in 1× TAE (40 mM Tris-acetate, 1 mM EDTA) using an MJ Research PPI 200 power inverter, in a cold room. Running parameters were set to maximize resolution in 50–400 kb range. Lambda DNA and its concatemers (both from Sigma) were used as molecular weight standards. After gelelectrophoresis, DNA was transferred to a Hybond-N+ membrane (Amersham), the filters were exposed on a PhosphorImager plate for up to 16 h and analyzed by a Molecular Dynamics PhosphorImager. Urea-agarose gelelectrophoresis was carried out according to Materna et al. [1998]; (see also Varga et al., 1999), resolving single-stranded (ss) and double-stranded (ds) DNA in the same gel. This technique allows recognition of ss discontinuities, as opposed to standard non-denaturing electrophoresis. The procedure involves denaturation of DNA by heat-treatment and electrophoresis in the presence of urea. Urea (0.012 g) was added to each 25 μl sample then non-denatured and heat-denatured sample pairs were prepared, with the heat-denatured samples placed to 95°C for 5 min before applying to the gel. During gel preparation, urea was added to a final concentration of 1 M when the solution cooled below 60°C. The electrophoresis buffer was also prepared from 1× TAE containing 1 M urea. Wide-bore pipette tips were applied for handling the samples to minimize mechanical shearing. Staining of the gels with 0.5 μg/ml ethidium bromide was carried out after electrophoresis.

Cloning and Sequencing of the ~50 kb Fragment Ends

Blunt ends were created by Klenow enzyme and the gel-purified, blunt-ended ~50 kb fragments were ligated to Sma I digested pUC18. The predigested, dephosphorylated “Ready-To-Go” pUC18 vector was from Amersham Biosciences. Cleavage of this sample by Sac I created (3′-protruding) cohesive termini, leaving only the distal fragments of the ~50 kb DNA attached to the plasmid. After a second cycle of ligation, the purified DNA was electroporated using a BTX ECM600 electroporator into SURE (Stratagene) bacteria providing blue/white selection of recombinants on X-Gal. For sequencing reactions, the M13 forward primer was used. Sequences were determined partly at the Biological Research Center of the Hungarian Academy of Sciences, Szeged, partly in János Szümegi’s lab at University Nebraska Medical Center (Omaha, NE).

Sequence Analysis

The MEME/MAST motif discovery tool [Bailey and Elkan, 1994] was accessed through the following url: http://meme.sdsc.edu/meme/website/meme-intro.html. Repetitive elements were identified by the CENSOR program (http://www.girinst.org/Censor_Server-Data_Entry_Forms.html). Motives with potential transcription factor binding property were identified by the program AliBaba2.1 (http://wwwiti.cs.unimagdeburg.de/~grabe/alibaba2/). For BLAST analysis, we used the following urls: http://www.ncbi.nlm.nih.gov/BLAST/ and http://dove.embl-heidelberg.de/Blast2/ (WU-BLAST); nucleotide BLAST against UniGene Cluster Sequences was made possible by http://cgap.nci.nih.gov/Genes/SeqFinder. For pairwise comparison of different sequences we used the BLAST 2 program, or a dot-plot procedure (Dotlet): http://www3.isrec.isb-sib.ch/java/dotlet/dotlet_about.html. The plot.it Server (http://www3.icgeb.trieste.it/~dna/plot_it.html) was used to calculate
conformational characteristics of the breakpoint sequences, setting window sizes of 3 for short, and 10 for longer sequences. The predicted 3-D models of the consensus motives were first built based on a consensus model of DNA curvature [Munteanu et al., 1998], and the raw models were refined by simulated annealing [Vlahovicek and Pongor, 2000]. The long models (Fig. 3) were built without simulated annealing. CpG distribution was calculated by: EMBoss::CpGplot (http://www.ebi.ac.uk/emboss/cpgplot/). The following MAR-finder program was used: http://www. futuresoft.org/MAR-Wiz/. The breakpoints in the middle of the 600 bp-long sequences analyzed are listed below (clone number, accession number, GeneBank position of breakpoint; respectively): (1, AL139403, 43243); (2, AL353738, 41680); (5, AC025478, 68009); (9, AC009702, 143766); (10, AL109740, 113617); (11, AC012479, 159759); (12, AL161773, 41277); (13, AC023487, 123554); (14, AL157397, 8788); (15, AC024171, 111877); (19, AC019262, 100776); (20, AL137023, 30275); (21, X02418, 1433); (25, AC004993, 21562); (27, AL121983, 39061); (30, AC015722, 61453); (31, AC010195, 154494); (32, AL132670, 36238); (33, AC004499, 8242); (34, AL132670, 36238); (36, AL121919, 10130); (38, AC015722, 61453); (39, AC002073 32227); (40, AL109740, 113617); (41, 15q24.3, 4q22.1, 5p14.3-q13.3, etc.; 29, 7p15.3, 12p13, q13.3, 4q32-q34, 15q15.3, etc.; 27, 19p13.3, 17q21.32, 19p13.12, etc.; 25, AL109740, 113617); (20, AL137023, 30275); (21, X02418, 1433); (25, AC004993, 21562); (27, AL121983, 39061); (30, AC015722, 61453); (31, AC010195, 154494); (32, AL132670, 36238); (33, AC004499, 8242); (34, AL132670, 36238); (36, AL121919, 10130); (38, AC015722, 61453); (39, AC002073 32227); (40, AL109740, 113617); (41, 15q24.3, 4q22.1, 5p14.3-q13.3, etc.; 11, 1p32.3, 1q42.3, 18q12, etc.; 21, 1p34.1, 3q29, etc.; 43, AL120766, 57848); (41, AL008722, 14745); (43, AC012230, 67385).

RESULTS

In order to clone a representative sample of the ~50 kb fragment ends, their end-configuration was first characterized.

Figure 1A–C demonstrate that the ~50 kb fragments can be efficiently labeled with 32P-dATP using the Klenow enzyme. Figure 1A also shows that DNA fragments electroeluted from the different size bands on the gel, precipitated and redissolved, could be re-run without major degradation, suggesting that artefactual mechanical breakage is not an important factor determining the ds size of the DNA molecules in our system. The labeling characteristics were also studied on urea-agarose gels, analyzing ds and ss samples simultaneously (Fig. 1B). In view of the ~50 kb peak in the 32P-labeled fragment length distribution, a major part of labeling by Klenow occurs at the termini in addition to labeling at internal sites, according to PhosphorImager line-scans of the heat-denatured samples (Fig. 1B, lower panel). Labeling by the Klenow enzyme is made possible by the presence of an accessible hydroxyl on 3’-recessed ends. However, phosphorylated hydroxyls that may be present as a result of various genotoxic events could also be processed by the Klenow enzyme which retains a 3’- to 5’-exonuclease activity. As Figure 1C shows, an exo– mutant Klenow enzyme, which lacks this activity, also efficiently labeled the ~50 kb fragments. Thus, the ~50 kb fragments have recessed 3’-ends with hydroxyl groups accessible to enzymes.

Unexpectedly, the ~50 kb fragments could not be labeled by TdT using either Mg2+ or Co++ as the cofactor of the reaction, in spite of their strong labeling with both Klenow enzymes, as shown in Figures 1B and 2A. When an aliquot of the same DNA sample was partially digested with the restriction enzyme Pst I (producing 3’-protruding ends) prior to addition of TdT, strong labeling was achieved in the complete size range of fragments present, demonstrating that the lack of TdT labeling in the unrestricted samples was due to the absence of an appropriate DNA substrate (Fig. 2A). Figure 2B compares the efficiency of TdT labeling in the case of Lambda phage DNA PstI and EcoRI digests (generating 3’- and 5’-protruding ends, respectively). Figure 2C shows that incorporation of 32P by TdT into 50 kb ds fragments was well detectable when the TdT reaction followed the extension of the recessed 3’-ends by the Klenow enzyme.

The dominantly Klenow/’TdT’ configuration of the fragment termini was used for cloning the ends (for details of the strategy see Methods). The sequence of several clones was determined and the location of our sequences in the genome identified by BLAST searching of the databank. Using sequence elements containing 300–300 bp from both sides of the breakpoints, we searched for homologies within GeneBank sequences collected into a non-redundant set of gene-oriented clusters (UniGene®; see Methods). About 50% of the breakpoint sequences have produced many hits, showing that our clones contain sequence elements that are frequently shared by genes and their sequence environment. Notably, many hits were from hot-spots of chromosomal rearrangements: clone 2, 14q32.11; 12, 8p21.1; 14, 3q29, 17p13.3, 18q12, etc.; 15, 17p13.3, 13q12.2-q13.3, 4q32-q34, 15q15.3, etc.; 27, 19p13.3, 17q21.32, 19p13.12, etc.; 29, 7p15.3, 12p13, 3q29, etc.; 41, 15q24.3, 4q22.1, 5p14.3-q13.3, etc.; 11, 1p32.3, 1q42.3, 18q12, etc.; 21, 1p34.1,
A 38, 5q31.1, 1p35.2, 4q11, etc. (the recurrent ones are underlined). According to the modeling of the breakpoint sequences (by the plot.it server, see Methods), they tend to contain curved DNA (for representative examples see Fig. 3A). Based on the 600 bp long sequences containing the breakpoints, we looked for possible sequence regularities. Analysis of 25 breakpoints demonstrated common repetitive elements that are also shared by known breakpoint regions frequently involved in gene rearrangements. As shown in Table I, 19 clones had repetitive elements within the sequences, usually involving the breakpoints themselves. Figure 3C shows the localization of the ALU element in certain breakpoint sequences: in the case of clone 14, 29, and 38, the ALU element is on one side of the breakpoint, while in clone 15, 27, and 11 ALU is bisected by the breakpoint. The frequency of regions with potential MAR/SAR characteristics, based on any combination of the criteria listed in the MAR-finder program applied (see Methods) to screen the assembled sequences of the clones, did not appear to exceed the density expected in random DNA. However, we note that several clones (5/25) possess an AT-rich sequence element suggested to play a role in these structures [Liebich et al., 2002], right in the vicinity of the breakpoints. The sequences have also been searched for possible base unpairing regions (BURs; [Kohwi-Shigematsu and Kohwi, 1990]); only a minority of the sequences were suspected to have such features based on sequence characteristics and in fact

Fig. 1. A: α-[32P]dATP-labeling of HL60 DNA by Klenow enzyme. Lane 1: HL60 DNA, containing both ~50 kb and larger size fragments; lane 2: re-run of electrophoresed DNA derived from the high molecular weight species shown in lane 1; lane 3: re-run of electrophoresed DNA derived from the ~50 kb band of the previous samples; lane 4: λ DNA. The DNA samples were run on neutral agarose gels by FIGE, 32P incorporation was detected by film autoradiography. B: Urea-agarose gelelectrophoretic analysis of the ss length distribution of the ~50 kb (ds size) HL60 DNA samples following Klenow- or TdT-labeling with α-[32P]dATP. Upper panel: ethidium bromide stained gel; middle panel: 32P incorporation detected by PhosphorImager. Lower panel: line-scans of lanes 1 and 2 in panel B. Samples in lanes 1 and 3: Klenow-labeled DNA, non-denatured; lanes 2 and 4: Klenow-labeled DNA, denatured. Lanes 5 and 6: non-denatured and denatured DNA, respectively, after TdT reaction. Lane 7: λ Hind III fragments; lane 8: λ DNA. C: α-[32P]dATP-labeling of ~50 kb DNA by Klenow or Klenow exo-enzymes, resolved on a neutral agarose gel by FIGE. Upper panel: ethidium bromide stained agarose gel; lower panel: 32P incorporation detected by PhosphorImager. Lane 1: λ EcoRI fragments 32P-labeled by Klenow; lane 2: ~50 kb DNA fragments derived from Jurkat cells labeled by Klenow; lane 3: ~50 kb DNA fragments derived from NIH 3T3 cells labeled by Klenow; lane 4: ~50 kb DNA fragments derived from Jurkat cells labeled by Klenow exo-; lane 5: ~50 kb DNA fragments derived from 3T3 cells labeled by Klenow exo-; P: pulse-marker (λ concatemers).
most of these proved to be BUR-negative in gel-shift assays of recombinant SATB1 binding (data not shown). Several sequences of our clones exhibit peculiar conformational characteristics, with the center of symmetry or the transition point in the computed parameters located exactly at, or close to, the breakpoint. Examples of such features are demonstrated in Figure 4, panels A–D. Some of the breakpoints exhibited a striking symmetry exactly at the breakpoint, in terms of CpG dinucleotide frequency (Fig. 4, panels E, F). Using the MEME motif discovery program [Bailey and Elkan, 1994], we were searching for short (6–12 bp) and long (6–50 bp) multilevel consensus motives. Among the short elements shared by several breakpoints, the palindrome CCAG-CCTGG, a topoisomerase II binding consensus motif and AAAAAAACAAAA were identified. These motives are potential transcription factor (including C/EBPα, HNF-3, Hb, YY1, and AP-2α/β) binding sites. The ratio of observed/expected occurrences of the above motives in our sequences, based on the complete sequence of ten human chromosomes, is around 5 and 11, respectively, considering only the perfect matches. Examples of the palindromic multilevel consensus sequence in the positive clones are shown in Table II. According to modeling of this motif (see Methods), CCAGCCTGG is strongly curved toward the major groove (Fig. 3B). There appears to be no general regularity as to the localization of the individual motives, although in several sequences they appear to be clustered around the breakpoints themselves (data not shown). In a longer (up to 50 bp) analysis window, further consensus motives were found, represented in our

Fig. 2. A: α-[32P]dATP labeling by TdT of ~50 kb HL60 DNA and its Pst I digest. Upper panel: ethidium bromide stained agarose gel; lower panel: 32P incorporation detected by PhosphorImager. Lane 1: DNA was partially digested with Pst I and then TdT reaction was performed adding the enzyme and the triphosphates directly into the digest. Lanes 2 and 3: undigested DNA samples after TdT-labeling; Co2+ (lane 2) or Mg2+ (lane 3) was used as the cofactor of the enzyme. Marker (m): λ Hind III fragments (no 32P label). B: Incorporation of α-[32P]dATP into λ DNA digested with PstI or EcoRI restriction enzymes by TdT. Upper panel: ethidium bromide stained agarose gel; lower panel: 32P incorporation detected by PhosphorImager. C: α-[32P]dATP labeling of ~50 kb DNA fragments by TdT, following extension of their ends by Klenow enzyme in presence of all four unlabeled triphosphates. Upper panel: ethidium bromide stained agarose gel; lower panel: 32P incorporation detected by PhosphorImager. ~50 kb DNA fragments were from HL60 (lane 2), or NIH 3T3 cells (lane 3). Marker (m): λ concatemers (no 32P label).
sequences at an average frequency of approximately one per breakpoint sequence (data not shown). For comparison, arbitrarily chosen restriction enzyme cleavage sites within the ∼150 kb human breakpoint cluster region (BCR) gene (on chromosome 22q11.21, involved in the BCR/ABL rearrangement of chronic myeloid leukemia; accession number U07000) were selected to define 600 bp long sequences which were then analyzed in a similar fashion. Only ∼1/3 of these sequences exhibited long consensus motives, identified in the same window setting of the MEME program. No multilevel consensus sequences were found in the scrambled breakpoint sequences. One of the long motives detected by MEME, a 50 bp-long ALU sequence, and one of the short motives that is also part of ALU (CCAGCCTGG) co-localized with known hot-spots of BCR rearrangements (e.g., around nucleotide 125000 in U07000). In the 20–300 bp window, three (114, 77, and 39 bp long) consensus sequences have been detected by MEME, two of them shared by five clones (clones 29, 11, 27, 15, 14; all scoring below the probability level of 2.43e−50); the third one is present in these clones as well as in further four clones (all below level 1.09e−09). When the nucleotides of the same training set of 25
A–B: Double helix stability determined from melting profiles predicted according to Gotoh and Tagashira [1981]. A: breakpoint sequence no. 15 (600 bp); B: no. 33 (200 bp). The thick arrow points at the breakpoint. (Conformational analysis by Plot.it; see Methods.)

C: Flexibility of DNA obtained from conformational energy calculations [Sarai et al., 1989], expressed as dinucleotide twist, roll and tilt angles, in the case of breakpoint sequence no 10 (200 bp). Thick arrow: breakpoint. (Conformational analysis by Plot.it; see Methods.)

D: Twist angles in sequence no. 1 (40 bp) determined from NMR data (empty circles; [Ulyanov and James, 1995]), and as predicted based on conformational energy calculations [De Santis et al., 1990]. Thick arrow: breakpoint. (Conformational analysis by Plot.it; see Methods.)

E, F: Observed to expected ratio of C plus G to CpG calculated by CpGPlot [Larsen et al., 1992]; see Methods. (The expected number of CpG patterns is the number of CpG dinucleotides expected based on the frequency of C’s and G’s in that window. The observed number is the number of times a ‘C’ is found followed immediately by a ‘G’.) E: no. 1 (600 bp); F: no. 2 (600 bp). Thick arrow: breakpoint.
sequences were shuffled, no multilevel consensus sequences were detected.

DISCUSSION

Dominantly 5’-Protruding Configuration of the 50 kb Fragment Termini

In view of the autoradiographic pictures made of urea-agarose denaturing gels (Fig. 1), labeling by Klenow enzyme occurred at the termini, rather than at internal sites. Incorporation of 32PdATP mostly at random internal nicks or gaps would rather be expected to give rise to <50 kb average ss size of the labeled fragments. The intensive labeling by Klenow is suggestive of a dominantly 5’-protruding nature of the ~50 kb fragments, with free and accessible hydroxyls on recessed 3’-ends. This interpretation could be in line with the fact that the optimal substrates for TdT reaction are 3’-protruding termini [Roychoudhury and Wu, 1980; Takemoto et al., 1998]. Thus, a prevalent 5’-protruding nature of the termini could explain Klenow-positivity and TdT-negativity at the same time. However, a uniformly AT-rich terminal configuration would probably also allow for TdT labeling of the 5’-overhangs due to the “breathing” of the ds DNA. While labeling by Klenow in the presence of the four triphosphates can occur exclusively at termini with 5’-protruding configuration, TdT is less discriminative in the presence of Co$^{++}$ ions [Roychoudhury and Wu, 1980; Takemoto et al., 1998]. Indeed, those fragments of the lambda Eco RI digest ending in AT-rich sequences could be labeled by TdT, as opposed to fragments ending in GC-rich sequences (as concluded from a comparison of labeling intensities shown in Fig. 2B with the sequences of the termini of the lambda Eco RI fragments). However, the ends of several ~50 kb fragments showed no GC predominance (for the sequences analyzed, see their list in Methods), suggesting involvement of other factors.

The lack of labeling by TdT in solution is also unexpected in view of the fact that cytotoxic-fuged, fixed cells can become TUNEL-positive upon protease treatment [Gál et al., 2000]. However, a weak but well detectible end-labeling of ~50 kb DNA prepared from previously ethanol-fixed cells by TdT was observed.

TABLE I. Repetitive Elements in the Breakpoint Sequences

<table>
<thead>
<tr>
<th>Number</th>
<th>Code Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(A)</td>
</tr>
<tr>
<td>9</td>
<td>MIR@2</td>
</tr>
<tr>
<td>10</td>
<td>HERV39</td>
</tr>
<tr>
<td>11</td>
<td>ALU-Jo, ALU-Sg</td>
</tr>
<tr>
<td>12</td>
<td>L1ME, ORF2</td>
</tr>
<tr>
<td>14</td>
<td>ALU-Spqz</td>
</tr>
<tr>
<td>15</td>
<td>(TTTTG), ALU-Jb, ALU-Sx (CAAAA), L1M2C_5</td>
</tr>
<tr>
<td>20</td>
<td>L1M3A_5</td>
</tr>
<tr>
<td>21</td>
<td>ALR1, ALR2</td>
</tr>
<tr>
<td>25</td>
<td>HERV1P10FH, HAL1</td>
</tr>
<tr>
<td>27</td>
<td>ALU-Spqx, ALU-Sx</td>
</tr>
<tr>
<td>29</td>
<td>ALU-Sx</td>
</tr>
<tr>
<td>30</td>
<td>L2A</td>
</tr>
<tr>
<td>33</td>
<td>MER20</td>
</tr>
<tr>
<td>34</td>
<td>LTR67, MIR</td>
</tr>
<tr>
<td>36</td>
<td>L1M4B</td>
</tr>
<tr>
<td>38</td>
<td>HERV70_1 (TTTG), ALU-Ya5</td>
</tr>
<tr>
<td>41</td>
<td>L1</td>
</tr>
<tr>
<td>43</td>
<td>L2A</td>
</tr>
</tbody>
</table>

Numbers indicate the code name of the sequences found positive by the censor program (see Methods) from among 25 sequences analyzed.

TABLE II. Examples Within the Breakpoint Sequences of the Palindromic Multilevel Consensus Motif CCAGGCTGG Detected by the MEME Motif Discovery Tool (at $P < 8.36e^{-5}$; for the Program see Methods)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>(3)</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>(3)</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>(2)</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>(2)</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>(3)</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>G</td>
<td>A</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>T</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

The code name of the sequences containing the motif is followed by the number of motif copies in that sequence. In the case of multiple occurrences, the sequence of the best motif is shown.
while parallel samples of non-fixed origin were completely negative (data not shown). Fixation may facilitate the proteolytic digestion and elimination of protein contaminants close to the 5'-protruding DNA termini that might otherwise prevent TdT labeling by hampering DNA melting at the ends.

DNA fragmentation may involve a series of enzymatic or chemical processes including steps generating 3'-hydroxyls, as well as others that eliminate them by generating 3'-phosphates. In Caenorhabditis elegans [Wu et al., 2000], apoptotic DNA fragmentation was shown to occur in two steps, with a DNase II-like (NUC-1) activity generating TdT-silent, 3'-phosphorylated termini following the initial cleavages that generate TdT-positive termini. DNase II generates nicks with 3'-phosphate and 5'-hydroxyl termini [Bernardi, 1971], just like topoisomerase I [Yang et al., 1996]. 3'-phosphate groups are also among the major strand-break modifications emerging in the wake of being exposed to ionizing radiation and some other genotoxic effects [Takemoto et al., 1998]. However, labeling of the ~50 kb fragment ends by Klenow exo- in our system argues against the presence of 3'-phosphorylated termini. This points to the first interpretation, assuming 5'-protruding ends with free 3'-hydroxyls as the more likely explanation for our end-labeling data. Such a structure may be indicative of an enzymatic mechanism of the cleavages, and suggests that our cloning strategy is probably unbiased.

Relationship With Apoptotic DNA Fragmentation

The size distribution of DNA fragments derived from normal and apoptotic cells may be strikingly similar depending on the extent of the proteolytic treatment, in line with the fact that DNA fragmentation in the caspase-dominated milieu of apoptotic cells is already observed at mild proteolytic circumstances [Szabó, 1995]. Although the 50 kb fragments were shown to include blunt-ended molecules [Khodarev et al., 2000], their proportion in the cell lysates was not investigated. Furthermore, the biochemistry of the cleavages is probably complex (see Wu et al., 2000, above; Jin et al., 1999), therefore, the blunt [Khodarev et al., 2000] or 1-base 5'-overhangs with 5'-phosphate and 3'-hydroxyl [Widlak et al., 2000] end configuration reported for apoptotic fragmentation should not be considered decisive evidence against the relationship between the two phenomena.

Sequence Characteristics of the Breakpoints

It is possible that the fragile/hypersensitive regions involved belong to several classes reflecting different mechanisms acting in parallel, blurring perhaps more significant individual regularities. Notwithstanding, consensus motives, with potential transcription factor binding capability, have been identified. Their frequency appears to exceed the level of average genomic occurrence (based on real, rather than calculated, frequency data). Repetitive elements, expected to account for ~30% of randomly fragmented human DNA [Moyzis et al., 1989; Stallings et al., 1990], have been observed in the majority of the breakpoint sequences analyzed. The architecture of the wider sequence environment of the breakpoints is, in general, moderately curved. These general features collectively suggest that fragmentation was non-random, rather, it occurred at special predilection points. This impression has been further substantiated by some features of the consensus motives identified in the breakpoint sequences.

Although the AAAAAAACAAAAA motif resembles one of the signal sequences of VDJ recombination, no example of true heptamer–nonamer signal-pair has been detected within the sequences analyzed. Another short motif, CCAGCCTGG is strongly curved (Fig. 3B), just like the similar but octameric CCAGCTGG, a palindromic sequence suggested to be involved in rearrangements regularly inflicting the MLL gene in childhood acute leukemia and posttherapeutic leukemia [Aplan et al., 1996; Stanulla et al., 1997; Stanulla et al., 1998; Strissel et al., 1998]. Cleavage at MLL appears as part of the ~50 kb fragmentation of chromatin in apoptosis [Stanulla et al., 1997]. Treatment of human lymphoid cells with topoisomerase II inhibitors, or just exposing them to mild stress, leads to cleavage within a 8.3 kb region of MLL, implicating a topoisomerase II binding motif containing the above octamer [Aplan et al., 1996]. The cells which are not able to repair these discontinuities are thought to undergo apoptosis, while repair may occasionally lead to rearrangements at this locus. The cleavages producing ~50 kb fragments upon DNA isolation may involve fragile sites exemplified by the MLL breakpoint.
We have compared two rearrangement-prone 500 bp-long subregions (between nucleotides 74,501–75,000 and 125,000–125,500) of the ~150 kb BCR gene and found that six clones from our 25 showed extensive homologies with the two subregions, in ALU repetitive elements. Although the issue of ALU involvement in the rearrangements leading to t(9;22) translocation has been controversial, the non-random arrangement of these interspersed repeats in the BCRs is highly impressive [Papadopoulos et al., 1990; Jeffs et al., 1998]. We also note that ALU sequences have been recently implicated as binding sites for a cohesin-chromatin-remodeling complex [Hakimi et al., 2002]. It is interesting in this context that the more exposed, GC-rich chromatin regions flanked by cohesin-binding AT-rich DNA segments fluctuating along the chromosomal DNA with loop-size periodicity have been suggested to correspond to recombinational hotspots [Filipski and Mucha, 2002]. The ALU elements found in six of our sequences share the short motives with breakpoints devoid of ALU and this repetitive element was mapped immediately adjacent to the breakpoint itself in some clones (see Fig. 3C).

The same parameters that exhibit sharp transitions exactly at the breakpoints of our sequences behave in an analogous fashion at some, but not all, of the known BCR breakpoints (data not shown). The fluctuation of one of these parameters (twist angle) has been suggested to be indicative of fragile, high-flexibility regions [Mimori et al., 1999]. Although the immediate sequence environment of the breakpoints analyzed here exhibit no preference for AT or GC, a peculiar, symmetrical behavior of CpG dinucleotide distribution was observed around several (8/25) of the breakpoints (see Fig. 4E,F). Interestingly, such patterns of CpG distribution can also be observed in some hot-spots of BCR rearrangement (not shown). These observations may be related to instances when the GC and/or CpG content of the DNA appeared to influence the propensity for the formation of nuclease hypersensitive regions affecting higher order chromatin organization [Mucha et al., 2000].

In summary, the ~50 kb DNA fragments obtained upon isolation of DNA from mammalian chromatin by conventional procedures appear to involve non-random sequences reminiscent of certain gene regions frequently implicated in chromosomal rearrangements. Our data support the possibility that the fragile/hypersensitive regions involved in loop-size fragmentation of chromatin derived from normal cells may be the substrates for gene rearrangements in a pathological scenario.

ACKNOWLEDGMENTS

We thank Dr. János Sümegi (Omaha, Nebraska), Dr. Andor Udvardy (Biological Research Center, Szeged, Hungary), and Dr. Dieter Werner (DKFZ, Heidelberg, Germany) for valuable advice and helpful discussions, Dr. Janos Sümegi for the sequencing of several breakpoint clones and Dr. Terumi Kohwi-Shigematsu (Lawrence Berkeley Laboratory, Berkeley, CA) for generous help and advice in the evaluation of certain sequence characteristics. The authors thank Daniel Benediktsson (University of Debrecen) for correcting the manuscript linguistically.

REFERENCES

Razin SV, Petrov P, Hancock R. 1991. Precise localization of the alpha-globin gene cluster within one of the 20–300-kilobase DNA fragments released by cleavage of chicken chromosomal DNA at topoisomerase II sites in vivo: Evidence that the fragments are DNA loops or domains. Proc Natl Acad Sci USA 88:8515–8519.

Stanulla M, Wang J, Chervinsky DS, Thandla S, Aplan PD. 1997. DNA cleavage within the MLL breakpoint cluster region is a specific event which occurs as part of higher-order chromatin fragmentation during the initial stages of apoptosis. Mol Cell Biol 17:4070–4079.

Q1: Please provide the grant sponsor name.
Q2: Please provide the location.
Q3: Please provide the location.
Q4: Please provide the location.
Q5: Please provide the location.
Q6: Please provide the city name.
Q7: Please provide the location.
Q8: Please provide the location.
ELECTRONIC PROOF CHECKLIST, JOURNAL OF CELLULAR BIOCHEMISTRY

IMMEDIATE RESPONSE REQUIRED
Please follow these instructions to avoid delay of publication.

☐ READ PROOFS CAREFULLY
 • This will be your only chance to review these proofs.
 • Please note that the volume and page numbers shown on the proofs are for position only.

☐ ANSWER ALL QUERIES ON PROOFS (Queries for you to answer are attached as the last page of your proof.)
 • Mark all corrections directly on the proofs. Note that excessive author alterations may ultimately result in delay of publication and extra costs may be charged to you.

☐ CHECK FIGURES AND TABLES CAREFULLY (Color figures will be sent under separate cover.)
 • Check size, numbering, and orientation of figures.
 • All images in the PDF are downsamped (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article.
 • Review figure legends to ensure that they are complete.
 • Check all tables. Review layout, title, and footnotes.

☐ COMPLETE REPRINT ORDER FORM
 • Fill out the attached reprint order form. It is important to return the form even if you are not ordering reprints. You may, if you wish, pay for the reprints with a credit card. Reprints will be mailed only after your article appears in print. This is the most opportune time to order reprints. If you wait until after your article comes off press, the reprints will be considerably more expensive.

RETURN ☐ PROOFS ☐ REPRINT ORDER FORM ☐ CTA (If you have not already signed one)

RETURN WITHIN 48 HOURS OF RECEIPT VIA FAX TO Natasha Wolfe AT 201-748-6182

QUESTIONS?
Natasha Wolfe, Journal Production Editor
Phone: 201-748-5971
E-mail: nawolfe@wiley.com
Refer to journal acronym and article production number (i.e., JCB 00s-161 for Journal of Cellular Biochemistry ms 00s-161).
COPYRIGHT TRANSFER AGREEMENT

Date: ____________________________

To: Publisher/Editorial office use only

Re: Manuscript entitled __ (the "Contribution")

for publication in __ (the "Journal")

published by Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc. ("Wiley").

Dear Contributor(s):

Thank you for submitting your Contribution for publication. In order to expedite the publishing process and enable Wiley to disseminate your work to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned to us as soon as possible. If the Contribution is not accepted for publication this Agreement shall be null and void.

A. COPYRIGHT

1. The Contributor assigns to Wiley, during the full term of copyright and any extensions or renewals of that term, all copyright in and to the Contribution, including but not limited to the right to publish, republish, transmit, sell, distribute and otherwise use the Contribution and the material contained therein in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

2. Reproduction, posting, transmission or other distribution or use of the Contribution or any material contained therein, in any medium as permitted hereunder, requires a citation to the Journal and an appropriate credit to Wiley as Publisher, suitable in form and content as follows: (Title of Article, Author, Journal Title and Volume/Issue)

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor or, if applicable, the Contributor's Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure or article of manufacture described in the Contribution, and the right to make oral presentations of material from the Contribution.

C. OTHER RIGHTS OF CONTRIBUTOR

Wiley grants back to the Contributor the following:

1. The right to share with colleagues print or electronic "preprints" of the unpublished Contribution, in form and content as accepted by Wiley for publication in the Journal. Such preprints may be posted as electronic files on the Contributor's own website for personal or professional use, or on the Contributor's internal university or corporate networks/intranet, or secure external website at the Contributor's institution, but not for commercial sale or for any systematic external distribution by a third party (e.g., a listserv or database connected to a public access server). Prior to publication, the Contributor must include the following notice on the preprint: "This is a preprint of an article accepted for publication in [Journal title] © copyright (year) (copyright owner as specified in the Journal)". After publication of the Contribution by Wiley, the preprint notice should be amended to read as follows: "This is a preprint of an article published in [include the complete citation information for the final version of the Contribution as published in the print edition of the Journal]", and should provide an electronic link to the Journal's WWW site, located at the following Wiley URL: http://www.interscience.Wiley.com/. The Contributor agrees not to update the preprint or replace it with the published version of the Contribution.
2. The right, without charge, to photocopy or to transmit online or to download, print out and distribute to a colleague a copy of the published Contribution in whole or in part, for the Contributor's personal or professional use, for the advancement of scholarly or scientific research or study, or for corporate informational purposes in accordance with Paragraph D.2 below.

3. The right to republish, without charge, in print format, all or part of the material from the published Contribution in a book written or edited by the Contributor.

4. The right to use selected figures and tables, and selected text (up to 250 words, exclusive of the abstract) from the Contribution, for the Contributor's own teaching purposes, or for incorporation within another work by the Contributor that is made part of an edited work published (in print or electronic format) by a third party, or for presentation in electronic format on an internal computer network or external website of the Contributor or the Contributor's employer.

5. The right to include the Contribution in a compilation for classroom use (course packs) to be distributed to students at the Contributor's institution free of charge or to be stored in electronic format in datarooms for access by students at the Contributor's institution as part of their course work (sometimes called “electronic reserve rooms”) and for in-house training programs at the Contributor's employer.

D. CONTRIBUTIONS OWNED BY EMPLOYER

1. If the Contribution was written by the Contributor in the course of the Contributor's employment (as a "work-made-for-hire" in the course of employment), the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor’s signature), in the space provided below. In such case, the company/employer hereby assigns to Wiley, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.

2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the published Contribution internally in print format or electronically on the Company's internal network. Upon payment of the Publisher's reprint fee, the institution may distribute (but not resell) print copies of the published Contribution externally. Although copies so made shall not be available for individual re-sale, they may be included by the company/employer as part of an information package included with software or other products offered for sale or license. Posting of the published Contribution by the institution on a public access website may only be done with Wiley's written permission, and payment of any applicable fee(s).

E. GOVERNMENT CONTRACTS

In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of the Contribution and may authorize others to do so, for official U.S. Government purposes only, if the U.S. Government contract or grant so requires. (U.S. Government Employees: see note at end).

F. COPYRIGHT NOTICE

The Contributor and the company/employer agree that any and all copies of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley.

G. CONTRIBUTOR'S REPRESENTATIONS

The Contributor represents that the Contribution is the Contributor's original work. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before, except for "preprints" as permitted above. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley's permissions form or in the Journal's Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe on the rights or privacy of others, or contain material or instructions that might cause harm or injury.
CHECK ONE:

[____]Contributor-owned work

Contributor's signature __ Date

Type or print name and title

________________________________ ________________________________

Co-contributor's signature ___ Date

Type or print name and title

ATTACH ADDITIONAL SIGNATURE PAGE AS NECESSARY

[____]Company/Institution-owned work

Company or Institution (Employer-for-Hire) ____________________________ Date

Authorized signature of Employer ____________________________________ Date

[____]Company/Institution-owned work

(made-for-hire in the course of employment)

Note to U.S. Government Employees

A Contribution prepared by a U.S. federal government employee as part of the employee's official duties, or which is an official U.S. Government publication is called a "U.S. Government work," and is in the public domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign and return this Agreement. If the Contribution was not prepared as part of the employee's duties or is not an official U.S. Government publication, it is not a U.S. Government work.

[____]U.S. Government work

Note to U.K. Government Employees

The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. In such case, the Publisher will forward the relevant form to the Employee for signature.
Please complete this form even if you are not ordering reprints. This form MUST be returned with your corrected proofs and original manuscript. Your reprints will be shipped approximately 4 weeks after publication. Reprints ordered after printing will be substantially more expensive.

REPRINTS ARE ONLY AVAILABLE IN LOTS OF 100. IF YOU WISH TO ORDER MORE THAN 500 REPRINTS, PLEASE CONTACT OUR REPRINTS DEPARTMENT AT (201) 748-5971 FOR A PRICE QUOTE.

Please check one:
☐ Check enclosed
☐ American Express
☐ Bill me
☐ Visa
☐ Credit Card
☐ MasterCard

INTERNATIONAL ORDERS MUST BE PAID IN CURRENCY AND DRAWN ON A U.S. BANK

Please send me ____________________ reprints of the above article at $_____________________.

Please add appropriate State and Local Tax (Tax Exempt No.____________________) $_____________________.

Please add 5% Postage and Handling $_____________________.

TOTAL AMOUNT OF ORDER $_____________________.

BILL TO:
Name ____________________
Institution ____________________
Address ____________________
Purchase Order No. ____________________

SHIP TO: (Please, no P.O. Box numbers)
Name ____________________
Institution ____________________
Address ____________________
Phone ____________________
Fax ____________________
E-mail ____________________
Softproofing for advanced Adobe Acrobat Users - NOTES tool

NOTE: ACRoBAT READER FROM THE INTERNET DOES NOT CONTAIN THE NOTES TOOL USED IN THIS PROCEDURE.

Acrobat annotation tools can be very useful for indicating changes to the PDF proof of your article. By using Acrobat annotation tools, a full digital pathway can be maintained for your page proofs.

The NOTES annotation tool can be used with either Adobe Acrobat 3.0x or Adobe Acrobat 4.0. Other annotation tools are also available in Acrobat 4.0, but this instruction sheet will concentrate on how to use the NOTES tool. Acrobat Reader, the free Internet download software from Adobe, DOES NOT contain the NOTES tool. In order to softproof using the NOTES tool you must have the full software suite Adobe Acrobat Exchange 3.0x or Adobe Acrobat 4.0 installed on your computer.

Steps for Softproofing using Adobe Acrobat NOTES tool:

1. Open the PDF page proof of your article using either Adobe Acrobat Exchange 3.0x or Adobe Acrobat 4.0. Proof your article on-screen or print a copy for markup of changes.

2. Go to File/Preferences/Annotations (in Acrobat 4.0) or File/Preferences/Notes (in Acrobat 3.0) and enter your name into the “default user” or “author” field. Also, set the font size at 9 or 10 point.

3. When you have decided on the corrections to your article, select the NOTES tool from the Acrobat toolbox and click in the margin next to the text to be changed.

4. Enter your corrections into the NOTES text box window. Be sure to clearly indicate where the correction is to be placed and what text it will effect. If necessary to avoid confusion, you can use your TEXT SELECTION tool to copy the text to be corrected and paste it into the NOTES text box window. AT THIS POINT, YOU CAN TYPE THE CORRECTIONS DIRECTLY INTO THE NOTES TEXT BOX WINDOW. DO NOT CORRECT THE TEXT BY TYPING DIRECTLY ON THE PDF PAGE.

5. Go through your entire article using the NOTES tool as described in Step 4.

6. When you have completed the corrections to your article, go to File/Export/Annotations (in Acrobat 4.0) or File/Export/Notes (in Acrobat 3.0). Save your NOTES file to a place on your harddrive where you can easily locate it. NAME YOUR NOTES FILE WITH THE ARTICLE NUMBER ASSIGNED TO YOUR ARTICLE IN THE ORIGINAL SOFTPROOFING E-MAIL MESSAGE.

7. WHEN CLOSING YOUR ARTICLE PDF BE SURE NOT TO SAVE CHANGES TO ORIGINAL FILE.

8. To make changes to a NOTES file you have exported, simply re-open the original PDF proof file, go to File/Import/Notes and import the NOTES file you saved. Make changes and re-export NOTES file keeping the same file name.

9. When complete, attach your NOTES file to a reply e-mail message. Be sure to include your name, the date, and the title of the journal your article will be printed in.