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Abstract Upon isolation of DNA from normal eukaryotic cells by standard methods involving extensive proteolytic
treatment, a rather homogeneous population of loop-size, double-stranded DNA fragments is regularly obtained. These
DNA molecules can be efficiently end-labeled by the DNA polymerase | Klenow fragment, as well as by a 3'- to -5'-
exonuclease-free Klenow enzyme, but not by terminal transferase (TdT) unless the ends have been filled up by Klenow,
suggesting that dominantly 5’ protruding termini are generated upon fragmentation. The filled-up termini were used for
cloning the distal parts of the ~50 kb fragments. BLAST analysis of the sequence of several clones allowed us to determine
the sequence of the non-cloned side of the breakpoints. Comparison of 25, 600 bp-long breakpoint sequences
demonstrated prevalence of repetitive elements. Consensus motives characteristic of the breakpoint sequences have been
identified. Several sequences exhibit peculiar computed conformational characteristics, with sharp transition or center of
symmetry located exactly at the breakpoint. Our data collectively suggest that chromatin fragmentation involves
nucleolytic cleavages at fragile/hypersensitive sites delimiting loop-size fragments in a non-random manner. Interestingly,
the sequence characteristics of the breakpoints are reminiscent of certain breakpoint cluster regions frequently subject to

gene rearrangements. J. Cell. Biochem. 9999: 1-13, 2003.
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Routine procedures of DNA isolation involv-
ing extensive proteolytic digestion of cell
lysates, phenol extraction, and ethanol precipi-
tation usually yield DNA of ~50 kb average size.
Since fragmentation of DNA can be avoided
when live cells are embedded into agarose plugs
prior to lysis, mechanical factors are generally
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believed to play the primary role in this loop-size
fragmentation observed when lysis is perform-
ed in a cell suspension. Based on this view,
random breakage of the long DNA molecules
would be expected. Several observations, how-
ever, run counter to this view: the average size
of DNA molecules obtained during protein
denaturing treatments of lysates prepared
from normal cells without embedding is always
around ~50 kb (forming in some cellular sys-
tems, a rather well-focused band, unexplained
by a compression artifact, see Szabé et al., 1990);
loop-size chromatin fragmentation can also be
observed upon rapid alkaline lysis of live cells in
suspension [Szab6 and Bacsé, 1996], and when
DNA is isolated from fixed cells [Gal et al.,
2000]; this phenomenon has also been demon-
strated when agarose plugs containing depro-
teinized chromatin of mammalian or yeast
cells are melted to 60-85°C [Varga et al.,
1999]. Based on the stepwise, large-scale chro-
matin fragmentation observed upon digestion of
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isolated nuclei with endogenous nucleases and
after treatment with topoisomerase II poisons it
was suggested that chromatin loops contain
approximately 50 kbp of DNA [Kokileva, 1988;
Filipski et al., 1990]. The size distribution of the
DNA in the experiments above are reminiscent
of the early stages of chromatin fragmentation
generated by apoptotic nucleases [Oberhammer
et al., 1993]. A common denominator of these
findings may be the unique fragility of chro-
matin at predilection sites marking loop-size
regions. The mechanism responsible for the
generation of loop-size fragments may involve
nucleases operating at hypersensitive sites,
similar to the models explaining apoptotic DNA
degradation phenomena, or an abrupt release
of torsional stress becoming manifest at the
bases of chromatin loops upon deproteinization.
Characterization of these predilection points
might be useful for understanding how apopto-
tic DNA fragmentation is superimposed on
analogous phenomena observed in non-apopto-
tic cells. Certain aspects of chromatin structure
may also be reflected by the phenomenon
studied, in view of the fact that loop-size frag-
mentation accompanying apoptosisisthoughtto
reflect the loop-level of higher-order chromatin
organization [Razin et al., 1991; Oberhammer
et al., 1993; Gromova et al., 1995; Lagarkova
et al., 1995; Khodarev et al., 2000]. Further-
more, molecular analysis of the breakpoints
involved in ~50 kb fragmentation could perhaps
open up leads to the possible relationship be-
tween these fragile sites and the hot-spots of
pathological gene rearrangements.
Degradation of DNA into megabase, and/or
~b50 kb, loop-size, discrete fragments, ulti-
mately to form an oligonucleosomal ladder (for
review see Nagata, 2000), are frequently ob-
served gelelectrophoretic symptoms of apopto-
tic cell death. The free DNA termini generated
upon chromatin fragmentation can be usually
detected via end-labeling by terminal transfer-
ase (TdT) or by the E. coli Klenow enzyme.
Degradation of DNA upon apoptosis may be
part of the physiological program evolved to get
rid of potentially harmful cell debris. On the
other hand, maintenance of DNA integrity is a
key element in the faithful propagation of
genetic information, and is, therefore, carefully
guarded against environmental and endogen-
ous challenges by an elaborate machinery of
DNA repair and checkpoint control. Unrepaired
discontinuities may ultimately invoke cell death

programs. In a series of studies, chromatin-
bound nucleases were suggested to carry out the
>50 kb cleavages, while soluble enzymes were
implicated in the oligonucleosomal fragmenta-
tion steps [Pandey et al., 1994, 1997; Liu et al.,
1998, 1999]. Others have demonstrated the role
of a caspase-activated DNase (CAD) in both
steps of DNA degradation [Sakahira et al.,
1998]. Reconciliation of these and many other
disparate findings may be through the consid-
eration of complexity, assuming that several
different nucleases may be responsible for the
different aspects of DNA fragmentation, and
that the fragmentation phenomena observed in
the chromatin derived from apoptotic cells may
be superimposed on a vulnerability already pre-
sent in the chromatin of normal cells.

We addressed the question whether the ends
of the ~50 kb fragments generated upon isola-
tion of DNA from normal eukaryotic cells by
standard methods involving proteolytic treat-
ments possess distinctive features. First, the
end-labeling characteristics of the fragments
were studied, using urea-TAE agarose denatur-
ing gelelectrophoresis. A dominantly 5'-pro-
truding end configuration was determined,
and this feature made the cloning of the ~50 kb
end-sequences possible. The sequences of sev-
eral clones were determined and compared with
each-other, and with the databank sequences.

METHODS
Cells

The HL60 (human promyelocytic leukemia)
and the Jurkat (human T cell lymphoma) cell
lines were maintained in RPMI 1640, the NIH
3T3 (mouse fibroblast) cells were maintained in
DMEM. Both media were supplemented with
20 mM glutamine, 10% fetal calf serum (Gibco
BRL®?), and antibiotics. The cells were washed
twice with PBS (phosphate-buffered saline,
pH 7.4) before further processing.

DNA Preparation

At a concentration of 107 cells/ml, the cells
were resuspended in TE (10 mM TRIS-HCI,
1 mM EDTA pH 8.0) containing 1 mg/ml Pro-
teinase K (PK, Sigma®*Chem. Com., molecular
biology grade, self digested), Sarkosyl (N-laur-
oylsarcosine Na-salt, Sigma), and 20 mM EDTA.
After incubation at 55°C overnight, the samples
were diluted 5x with TE then fresh PK (to
0.5 mg/ml) and SDS (sodium dodecyl sulfate,
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Sigma; 1%) were added for a second cycle of
digestion. The samples were then extracted
with phenol/chloroform, precipitated with etha-
nol, and redissolved in TE.

Enzyme Reactions

Terminal deoxynucleotidyl transferase (TdT),
Klenow, and the Klenow exo ™ fragment of DNA
polymerase I were purchased from New Eng-
land Biolabs®*and used at 25, 5, and 5 U/ml
concentration, respectively. The restriction
enzymes were from Amersham®®. o-[32P]dATP
(110 TBg/mmol) was from Izinta Trading Co.,
Ltd., Hungary®®. The protocols suggested by
the manufacturer were followed. Labeling reac-
tions using the Klenow enzymes were per-
formed in the presence of dGTP, dCTP, dTTP,
and o-[*?P]dATP. In the case of the TdT re-
actions, unlabeled dTTP and dGTP were in-
cluded in the reaction mixture along with
a-[*?P]JdATP. The unincorporated nucleotides
were removed by gel filtration on Sephadex G25
columns (Pharmacia Biotech).

Gelelectrophoresis and Autoradiography

Samples containing 1 pg DNA were loaded in
the appropriate sample buffer onto 1% agarose
gels that were run at 6-8 V/ecm in 1x TAE
(40 mM Tris-acetate, 1 mM EDTA) using an MdJ
Research PPI 200 power inverter, in a cold
room. Running parameters were set to max-
imize resolution in 50—400 kb range. Lambda
DNA and its concatemers (both from Sigma)
were used as molecular weight standards. After
gelelectrophoresis, DNA was transferred to a
Hybond-N* membrane (Amersham), the filters
were exposed on a PhosphorImager plate for up
to 16 h and analyzed by a Molecular Dynamics
PhophorImager. In some experiments, stan-
dard X-ray film autoradiography was used, as
indicated in the figure legends. Urea-agarose
gelelectrophoresis was carried out according to
Materna et al. [1998]; (see also Varga et al.,
1999), resolving single-stranded (ss) and dou-
ble-stranded (ds) DNA in the same gel. This
technique allows recognition of ss discontinu-
ities, as opposed to standard non-denaturing
electrophoresis. The procedure involves dena-
turation of DNA by heat-treatment and electro-
phoresis in the presence of urea. Urea (0.012 g)
was added to each 25 pl sample then non-
denatured and heat-denatured sample pairs
were prepared, with the heat-denatured sam-
ples placed to 95°C for 5 min before applying to

the gel. During gel preparation, urea was added
to a final concentration of 1 M when the solution
cooled below 60°C. The electrophoresis buffer
was also prepared from 1x TAE containing 1 M
urea. Wide-bore pipette tips were applied for
handling the samples to minimize mechanical
shearing. Staining of the gels with 0.5 pg/ml
ethidium bromide was carried out after electro-
phoresis.

Cloning and Sequencing of the ~50 kb
Fragment Ends

Blunt ends were created by Klenow enzyme
and the gel-purified, blunt-ended ~50 kb frag-
ments were ligated to Sma I digested pUC18.
The predigested, dephosphorylated “Ready-To-
Go” pUC18 vector was from Amersham Bios-
ciences. Cleavage of this sample by SacI created
(8'-protruding) cohesive termini, leaving only
the distal fragments of the ~50 kb DNA
attached to the plasmid. After a second cycle of
ligation, the purified DNA was electroporated
using a BTX ECM600 electroporator into SURE
(Stratagene?”) bacteria providing blue/white
selection of recombinants on X-Gal. For sequen-
cing reactions, the M13 forward primer was
used. Sequences were determined partly at the
Biological Research Center of the Hungarian
Academy of Sciences, Szeged, partly in Janos
Stimegi’s lab at University Nebraska Medical
Center (Omaha, NE).

Sequence Analysis

The MEME/MAST motif discovery tool [Bai-
ley and Elkan, 1994] was accessed through the
following wurl: http://meme.sdsc.edu/meme/
website/meme-intro.html. Repetitive elements
were identified by the CENSOR program (http://
www.girinst.org/Censor_Server-Data_Entry
Forms.html). Motives with potential transcrip-
tion factor binding property were identified by
the program AliBaba2.1 (http://wwwiti.cs.uni-
magdeburg.de/~grabe/alibaba2/). For BLAST
analysis, we used the following urls: http://
www.ncbi.nlm.nih.gov/BLAST/ and http://dove.
embl-heidelberg.de/Blast2/ (WU-BLAST); nucle-
otide BLAST against UniGene Cluster Sequen-
ces was made possible by http://cgap. nci.nih.
gov/Genes/SeqFinder. For pairwise comparison
of different sequences we used the BLAST 2
program, or a dot-plot procedure (Dotlet): http://
www.isrec.isb-sib.ch/java/dotlet/ dotlet _about.
html. The plot.it® Server (http://www3.icgeb.
trieste.it/~dna/plot_it.html) wasused to calculate
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conformational characteristics of the break-
point sequences, setting window sizes of 3 for
short, and 10 for longer sequences. The pre-
dicted 3-D models of the consensus motives
were first built based on a consensus model of
DNA curvature [Munteanu et al., 1998], and the
raw models were refined by simulated anne-
aling [Vlahovicek and Pongor, 2000]. The long
models (Fig. 3) were built without simulated
annealing. CpG distribution was calculated
by: EMBOSS::CpGPlot (http:/www.ebi.ac.uk/
emboss/cpgplot/). The following MAR-finder
program was used: http://www. futuresoft.org/
MAR-Wiz//. The breakpoints in the middle of
the 600 bp-long sequences analyzed are listed
below (clone number, accession number, Gene-
bank position of breakpoint; respectively): (1,
AL139403, 43243); (2, AL353738, 41680); (5,
AC025478, 68009); (9, AC009702, 143766); (10,
AL109740, 113617); (11, AC012479, 159759);
(12,AL161773,41277); (13, AC023487,123554);
(14, AL157397, 8788); (15, AC024171, 111877);
(19,AC019262, 100776); (20, AL137023, 30275);
(21, X02418, 1433); (25, AC004993, 21562); (27,
AL121983, 39061); (29, AC002073 32227); (30,
AC021329, 72010); (33, AC004499, 8242); (34,
AL132670, 36238); (36, AL121919, 10130); (38,
AC015722,61453);(39,AC010195, 154494); (40,
AC012076, 5848); (41, AL008722, 14745); (43,
AC012230, 67385).

RESULTS

In order to clone a representative sample of
the ~50 kb fragment ends, their end-configura-
tion was first characterized.

Figure 1A—C demonstrate that the ~50 kb
fragments can be efficiently labeled with o-
[*?P]dATP using the Klenow enzyme. Figure 1A
also shows that DNA fragments electroeluted
from the different size bands on the gel,
precipitated and redissolved, could be re-run
without major degradation, suggesting that
artefactual mechanical breakage is not an
important factor determining the ds size of the
DNA molecules in our system. The labeling
characteristics were also studied on urea-agar-
ose gels, analyzing ds and ss samples simulta-
neously (Fig. 1B). In view of the ~50 kb peak in
the 3?P-labeled fragment length distribution, a
major part of labeling by Klenow occurs at the
termini in addition to labeling at internal sites,
according to PhosphorImager line-scans of the
heat-denatured samples (Fig. 1B, lower panel).
Labeling by the Klenow enzyme is made

possible by the presence of an accessible hydro-
xyl on 3'-recessed ends. However, phosphory-
lated hydroxyls that may be present as a result
of various genotoxic events could also be pro-
cessed by the Klenow enzyme which retains a 3'-
to 5’-exonuclease activity. As Figure 1C shows,
an exo. mutant Klenow enzyme, which lacks
this activity, also efficiently labeled the ~50 kb
fragments. Thus, the ~50 kb fragments have
recessed 3'-ends with hydroxyl groups accessi-
ble to enzymes.

Unexpectedly, the ~50 kb fragments could
not be labeled by TdT using either Mg " or Co™*
as the cofactor of the reaction, in spite of their
strong labeling with both Klenow enzymes, as
shown in Figures 1B and 2A. When an aliquot of
the same DNA sample was partially digested
with the restriction enzyme Pst I (producing 3'-
protruding ends) prior to addition of TdT, strong
labeling was achieved in the complete size range
of fragments present, demonstrating that the
lack of TdT labeling in the unrestricted samples
was due to the absence of an appropriate DNA
substrate (Fig. 2A). Figure 2B compares the
efficiency of TdT labeling in the case of Lambda
phage DNA PstI and EcoRI digests (generating
3’- and &'-protruding ends, respectively).
Figure 2C shows that incorporation of *?P by
TdT into 50 kb ds fragments was well detectable
when the TdT reaction followed the extension of
the recessed 3’-ends by the Klenow enzyme.

The dominantly Klenow"/TdT~ configuration
of the fragment termini was used for cloning the
ends (for details of the strategy see Methods).
The sequence of several clones was determined
and the location of our sequences in the genome
identified by BLAST searching of the databank.
Using sequence elements containing 300—
300 bp from both sides of the breakpoints, we
searched for homologies within GeneBank
sequences collected into a non-redundant set
of gene-oriented clusters (UniGene®®, see
Methods). About 50% of the breakpoint
sequences have produced many hits, showing
that our clones contain sequence elements
that are frequently shared by genes and their
sequence environment. Notably, many hits
were from hot-spots of chromosomal rearrange-
ments: clone 2, 14q32.11; 12, 8p21.1; 14, 3929,
17p13.3, 18ql12, etc.; 15, 17pl13.3, 13ql2.2-
ql3.3, 4q32-q34, 15q15.3, etc.; 27, 19pl3.3,
17q21.32, 19p13.12, etc.; 29, 7pl5.3, 12pl3,
3q29, etc.; 41, 15q24.3, 4g22.1, 5p14.3-q13.3,
etc.; 11, 1p32.3, 1q42.3, 18q12, etc.; 21, 1p34.1,
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Fig. 1. A: o-[*’P|dATP-labeling of HL60 DNA by Klenow
enzyme. Lane 1: HL60 DNA, containing both ~50 kb and larger
size fragments; lane 2: re-run of electroeluted DNA derived from
the high molecular weight species shown in lane 1; lane 3: re-run
of electroeluted DNA derived from the ~50 kb band of the
previous samples; lane 4: L DNA. The DNA samples were run on
neutral agarose gels by FIGE, *?P incorporation was detected by
film autoradiography. B: Urea-agarose gelelectrophoretic ana-
lysis of the ss length distribution of the ~50 kb (ds size) HL60
DNA samples following Klenow- or TdT-labeling with a-
[2P]dATP. Upper panel: ethidium bromide stained gel; middle
panel: 2P incorporation detected by Phosphorlmager. Lower
panel: line-scans of lanes 1 and 2 in panel B. Samples in lanes 1
and 3: Klenow-labeled DNA, non-denatured; lanes 2 and 4:

38,5q31.1,1p35.2,4q11, etc. (the recurrent ones
are underlined). According to the modeling of
the breakpoint sequences (by the plot.it server,
see Methods), they tend to contain curved DNA
(for representative examples see Fig. 3A). Based
on the 600 bp long sequences containing the
breakpoints, we looked for possible sequence
regularities. Analysis of 25 breakpoints demon-
strated common repetitive elements that are
also shared by known breakpoint regions
frequently involved in gene rearrangements.
As shown in Table I, 19 clones had repetitive
elements within the sequences, usually invol-
ving the breakpoints themselves. Figure 3C
shows the localization of the ALU element in
certain breakpoint sequences: in the case of
clone 14, 29, and 38, the ALU element is on one

Klenow-labeled DNA, denatured. Lanes 5 and 6: non-denatured
and denatured DNA, respectively, after TdT reaction. Lane 7: A
Hind 11l fragments; lane 8: A DNA. C: a-[*?P]dATP-labeling of
~50 kb DNA by Klenow or Klenow exo ™~ enzymes, resolved on a
neutral agarose gel by FIGE. Upper panel: ethidium bromide
stained agarose gel; lower panel: *?P incorporation detected by
Phosphorimager. Lane 1: A EcoRI fragments *2P-labeled by
Klenow; lane 2: ~50 kb DNA fragments derived from Jurkat cells
labeled by Klenow; lane 3: ~50 kb DNA fragments derived from
NIH 3T3 cells labeled by Klenow; lane 4: ~50 kb DNA fragments
derived from Jurkat cells labeled by Klenow exo~; lane 5: ~50 kb
DNA fragments derived from 3T3 cells labeled by Klenow exo™;
P: pulse-marker (A concatemers).

side of the breakpoint, while in clone 15, 27, and
11 ALU is bisected by the breakpoint. The
frequency of regions with potential MAR/SAR
characteristics, based on any combination of the
criteria listed in the MAR-finder program
applied (see Methods) to screen the assembled
sequences of the clones, did not appear to exceed
the density expected in random DNA. However,
we note that several clones (5/25) possess an AT-
rich sequence element suggested to play a role
in these structures [Liebich et al., 20029], right
in the vicinity of the breakpoints. The sequences
have also been searched for possible base
unpairing regions (BURs; [Kohwi-Shigematsu
and Kohwi, 1990]); only a minority of the
sequences were suspected to have such features
based on sequence characteristics and in fact
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Fig. 2. A: o-[*?P]dATP labeling by TdT of ~50 kb HL60 DNA

and its Pst I. digest. Upper panel: ethidium bromide stained
agarose gel; lower panel: 3P incorporation detected by Phos-
phorlmager. Lane 1: DNA was partially digested with Pst | and
then TdT reaction was performed adding the enzyme and the
triphosphates directly into the digest. Lanes 2 and 3: undigested
DNA samples after TdT-labeling; Co™™ (lane 2) or Mg™** (lane 3)
was used as the cofactor of the enzyme. Marker (m): X Hind Il
fragments (no 32p Jabel). B: Incorporation of o-[>2P]dATP into A
DNA digested with Pstl or EcoRI restriction enzymes by TdT.

most of these proved to be BUR-negative in gel-
shift assays of recombinant SATB1 binding
(data not shown). Several sequences of our
clones exhibit peculiar conformational charac-
teristics, with the center of symmetry or the
transition point in the computed parameters
located exactly at, or close to, the breakpoint.
Examples of such features are demonstrated in
Figure 4, panels A—D. Some of the breakpoints
exhibited a striking symmetry exactly at the
breakpoint, in terms of CpG dinucleotide fre-
quency (Fig. 4, panels E, F). Using the MEME
motif discovery program [Bailey and Elkan,
1994], we were searching for short (6—12 bp)
and long (6-50 bp) multilevel consensus
motives. Among the short elements shared by
several breakpoints, the palindrome CCAG-
CCTGG, a topoisomerase II binding consensus
motif and AAAAAAACAAAA were identified.

3 EcoRI

B C

Upper panel: ethidium bromide stained agarose gel; lower
panel: *?P incorporation detected by Phosphorimager. C:
o-[*?P]dATP labeling of ~50 kb DNA fragments by TdT,
following extension of their ends by Klenow enzyme in presence
of all four unlabeled triphosphates. Upper panel: ethidium
bromide stained agarose gel; lower panel: **P incorporation
detected by Phosphorlmager. ~50 kb DNA fragments were from
HL60 (lane 2), or NIH 3T3 cells (lane 3). Marker (m): A
concatemers (no 2P label).

These motives are potential transcription factor
(including C/EBPalp, HNF-3, Hb,YY1, and AP-
2alph) binding sites. The ratio of observed/
expected occurrences of the above motives in
our sequences, based on the complete sequence
of ten human chromosomes, is around 5 and 11,
respectively, considering only the perfect
matches. Examples of the palindromic multi-
level consensus sequence in the positive clones
are shown in Table II. According to modeling
of this motif (see Methods), CCAGCCTGG is
strongly curved toward the major groove
(Fig. 3B). There appears to be no general
regularity as to the localization of the individual
motives, although in several sequences they
appear to be clustered around the breakpoints
themselves (data not shown). In a longer (up
to 50 bp) analysis window, further consensus
motives were found, represented in our
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A Breakpoint

Fig. 3. A: The curved configuration predicted in some of the
breakpoint sequences (numbers denote clone numbers; see their
list in Methods). The 3-D views show segments of 300
nucleotides aligned at the experimentally observed breakpoint
(thin perpendicular line). Conformations were predicted with the
model.it program ([Vlahovicek and Pongor, 2000], using the
Plot.it™ server; see Methods). B: Atomic detail representation of
the curved conformation predicted at the short consensus motif
CCAGCCTGG. Conformation was predicted with the model.it
program of the same server. C: Localization of ALU repetitive
elements in some clones, based on BLAST 2 analysis (see
Methods). In the case of each clone shown (see numbers 14, 29,

sequences at an average frequency of approxi-
mately one per breakpoint sequence (data not
shown). For comparison, arbitrarily chosen
restriction enzyme cleavage sites within the
~150 kb human breakpoint cluster region
(BCR) gene (on chromosome 22q11.21, involved
in the BCR/ABL rearrangement of chronic
myeloid leukemia; accession number U07000)
were selected to define 600 bp long sequences
which were then analyzed in a similar fashion.
Only ~1/3 of these sequences exhibited long
consensus motives, identified in the same
window setting of the MEME program. No
multilevel consensus sequences were found in

38, 15,27, and 11), the 600 bp long sequence is compared with
the complete Genebank clone it is part of. In this dotplot
representation, the breakpoint sequence is aligned on the Y axis,
and the corresponding Genebank clone sequence is assigned to
the X axis; the gray level of bar-hatching indicates the degree of
homologies. The position of the bars vertically encompassing the
full range (600 bp) indicate the position of the breakpoint
sequence within the Genebank clone; in the case of clone 15,
e.g., the 600 bp clone is at bp 111,877 within the 208,881 bp-
long Genebank clone, AC024171. Due to the differences in the
length of the clones (not indicated) the bars partially overlap at
the parameter settings applied.

the scrambled breakpoint sequences. One of the
long motives detected by MEME, a 50 bp-long
ALU sequence, and one of the short motives that
is also part of ALU (CCAGCCTGG) co-localized
with known hot-spots of BCR rearrangements
(e.g., around nucleotide 125000 in U07000). In
the 20—300 bp window, three (114, 77, and 39 bp
long) consensus sequences have been detected
by MEME, two of them shared by five clones
(clones 29, 11, 27, 15, 14; all scoring below the
probability level of 2.43e—50); the third one is
present in these clones as well as in further four
clones (all below level 1.09e—09). When the
nucleotides of the same training set of 25
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Fig. 4. A-B: Double helix stability determined from melting (empty circles; [Ulyanov and James, 1995]), and as predicted
profiles predicted according to Gotoh and Tagashira [1981]. A: based on conformational energy calculations [De Santis et al.,
breakpoint sequence no. 15 (600 bp); B: no. 33 (200 bp). The 1990]. Thick arrow: breakpoint. (Conformational analysis by
thick arrow points at the breakpoint. (Conformational analysis by Plot.it; see Methods.) E, F: Observed to expected ratio of C plus G
Plot.it; see Methods.) C: Flexibility of DNA obtained from to CpG calculated by CpGPlot [Larsen etal., 1992]; see Methods.
conformational energy calculations [Sarai et al., 1989], (The expected number of CpG patterns is the number of CpG
expressed as dinucleotide twist, roll and tilt angles, in the case dinucleotides expected based on the frequency of C’s and G’s in
of breakpoint sequence no 10 (200 bp). Thick arrow: breakpoint. that window. The observed number is the number of times a ‘C’ is
(Conformational analysis by Plot.it; see Methods.) D: Twist found followed immediately by a ‘G".) E: no. 1 (600 bp); F: no. 2

angles in sequence no. 1 (40 bp) determined from NMR data (600 bp). Thick arrow: breakpoint.
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TABLE I. Repetitive Elements in the
Breakpoint Sequences

5 (A)
9 MIR@2
10 HERV39
11 ALU-Jo, ALU-Sg
12 L1IME_ORF2
14 ALU-Spqxz
15 (TTTTG), ALU-Jb, ALU-Sxzg (CAAAA), L1IM2C _5
20 LIM3A 5
21 ALR1, ALR2
25 HERVIP10FH, HAL1
27 ALU-Spqgxz, ALU-Sx
29 ALU-Sx
30 L2A
33 MER20
34 LTR67, MIR
36 L1M4B
38 HERV70 I (TTTTG), ALU-Ya5
41 L1
43 L2A

Numbers indicate the code name of the sequences found positive
by the censor program (see Methods) from among 25 sequences
analyzed.

sequences were shuffled, no multilevel consen-
sus sequences were detected.

DISCUSSION

Dominantly 5’-Protruding Configuration of
the 50 kb Fragment Termini

In view of the autoradiographic pictures
made of urea-agarose denaturing gels (Fig. 1),
labeling by Klenow enzyme occurred at the
termini, rather than at internal sites. Incor-
poration of [*?P]JdATP mostly at random inter-
nal nicks or gaps would rather be expected
to give rise to <50 kb average ss size of the
labeled fragments. The intensive labeling by

TABLE II. Examples Within the Breakpoint

Klenow is suggestive of a dominantly 5'-pro-
truding nature of the ~50 kb fragments, with
free and accessible hydroxyls on recessed 3'-
ends. This interpretation could be in line with
the fact that the optimal substrates for TdT
reaction are 3’ protruding termini [Roychoudh-
ury and Wu, 1980; Takemoto et al., 1998]. Thus,
a prevalent 5'-protruding nature of the termini
could explain Klenow-positivity and TdT-nega-
tivity at the same time. However, a uniformly
AT-rich terminal configuration would probably
also allow for TdT labeling of the 5'- overhangs
due to the “breathing” of the ds DNA. While
labeling by Klenow in the presence of the four
triphosphates can occur exclusively at termini
with 5-protruding configuration, TdT is less
discriminative in the presence of Co'* ions
[Roychoudhury and Wu, 1980; Takemoto et al.,
1998]. Indeed, those fragments of the lambda
Eco RI digest ending in AT-rich sequences could
be labeled by TdT, as opposed to fragments
ending in GC-rich sequences (as concluded from
a comparison of labeling intensities shown in
Fig. 2B with the sequences of the termini of the
lambda Eco RI fragments). However, the ends
of several ~50 kb fragments showed no GC
predominance (for the sequences analyzed, see
their list in Methods), suggesting involvement
of other factors.

The lack of labeling by TdT in solution is also
unexpected in view of the fact that cytocentri-
fuged, fixed cells can become TUNEL-positive
upon proteinase treatment [Gal et al., 2000].
However, a weak but well detectible end-
labeling of ~50 kb DNA prepared from pre-
viously ethanol-fixed cells by TdT was observed,

Sequences of the Palindromic Multilevel

Consensus Motif CCAGGCTGG Detected by the MEME Motif Discovery Tool (at P < 8.36e—5;
for the Program see Methods)

38
11 (3)
36 (3)
29 (2)
27 (2)
15 (3)
14
42
40
39

2
40
34
16

2

QQ

Qaraaraaaaaaaan

[oleololololololololololololole!

el g g g g g g e S S '
ololololololololoYololo)]

()

NOCOARNCARNRNRNR
1 27 el T oloYoloTot ol
LTI
[ololololololalalolololalololo]
(olalolalolalolalolalolalolale)

The code name of the sequences containing the motif is followed by the number of motif copies in that sequence. In the case of multiple

occurrences, the sequence of the best motif is shown.
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while parallel samples of non-fixed origin were
completely negative (data not shown). Fixation
may facilitate the proteolytic digestion and
elimination of protein contaminants close to
the 5-protruding DNA termini that might
otherwise prevent TdT labeling by hampering
DNA melting at the ends.

DNA fragmentation may involve a series of
enzymatic or chemical processes including steps
generating 3'-hydroxyls, as well as others that
eliminate them by generating 3’-phosphates.
In Caenorhabditis elegans [Wu et al., 2000],
apoptotic DNA fragmentation was shown to
occur in two steps, with a DNase II-like (NUC-1)
activity generating TdT-silent, 3'-phosphory-
lated terminifollowing the initial cleavages that
generate TdT-positive termini. DNase II gen-
erates nicks with 3'-phosphate and 5'-hydroxyl
termini [Bernardi, 1971], just like topoisome-
rase I [Yang et al., 1996]. 3’-phosphate groups
are also among the major strand-break modi-
fications emerging in the wake of being exposed
to ionizing radiation and some other genotoxic
effects [Takemoto et al., 1998]. However, label-
ing of the ~50 kb fragment ends by Klenow exo ™
in our system argues against the presence of
3’-phosphorylated termini. This points to the
first interpretation, assuming 5'-protruding
ends with free 3'-hydroxyls as the more likely
explanation for our end-labeling data. Such a
structure may be indicative of an enzymatic
mechanism of the cleavages, and suggests that
our cloning strategy is probably unbiased.

Relationship With Apoptotic
DNA Fragmentation

The size distribution of DNA fragments
derived from normal and apoptotic cells may
be strikingly similar depending on the extent of
the proteolytic treatment, in line with the fact
that DNA fragmentation in the caspase-domi-
nated milieu of apoptotic cells is already
observed at mild proteolytic circumstances
[Szabo, 1995]. Although the 50 kb fragments
were shown to include blunt-ended molecules
[Khodarev et al., 2000], their proportion in the
cell lysates was not investigated. Furthermore,
the biochemistry of the cleavages is probably
complex (see Wu et al., 2000, above; Jin et al.,
1999), therefore, the blunt [Khodarev et al.,
2000] or 1-base 5'- overhangs with 5'-phosphate
and 3'-hydroxyl [Widlak et al., 2000] end
configuration reported for apoptotic fragmenta-
tion should not be considered decisive evidence

against the relationship between the two phe-
nomena.

Sequence Characteristics of
the Breakpoints

It is possible that the fragile/hypersensitive
regions involved belong to several classes
reflecting different mechanisms acting in par-
allel, blurring perhaps more significant indivi-
dual regularities. Notwithstanding, consensus
motives, with potential transcription factor
binding capability, have been identified. Their
frequency appears to exceed the level of average
genomic occurrence (based on real, rather than
calculated, frequency data). Repetitive ele-
ments, expected to account for ~30% of ran-
domly fragmented human DNA [Moyzis et al.,
1989; Stallings et al., 1990], have been observed
in the majority of the breakpoint sequences
analyzed. The architecture of the wider se-
quence environment of the breakpoints is, in
general, moderately curved. These general
features collectively suggest that fragmenta-
tion was non-random, rather, it occurred at
special predilection points. This impression has
been further substantiated by some features of
the consensus motives identified in the break-
point sequences.

Although the AAAAAAACAAAA motif re-
sembles one of the signal sequences of VDJ
recombination, no example of true heptamer—
nonamer signal-pair has been detected within
the sequences analyzed. Another short motif,
CCAGCCTGG is strongly curved (Fig. 3B), just
like the similar but octameric CCAGCTGG, a
palindromic sequence suggested to be involved
in rearrangements regularly inflicting the MLL
gene in childhood acute leukemia and postther-
apeutic leukemia [Aplan et al., 1996; Stanulla
et al., 1997; Stanulla et al., 1998; Strissel et al.,
1998]. Cleavage at MLL appears as part of the
~50 kb fragmentation of chromatin in apoptosis
[Stanulla et al., 1997]. Treatment of human
lymphoid cells with topoisomerase Il inhibitors,
or just exposing them to mild stress, leads to
cleavage within a 8.3 kb region of MLL, implica-
ting a topoisomerase Il binding motif containing
the above octamer [Aplan et al., 1996]. The cells
which are not able to repair these discontinu-
ities are thought to undergo apoptosis, while
repair may occasionally lead to rearrangements
at this locus. The cleavages producing ~50 kb
fragments upon DNA isolation may involve
fragile sites exemplified by the MLL breakpoint.
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We have compared two rearrangement-prone
500 bp-long subregions (between nucleotides
74,501-75,000 and 125,000-125,500) of the
~150 kb BCR gene and found that six clones
from our 25 showed extensive homologies with
the two subregions, in ALU repetitive elements.
Although the issue of ALU involvement in the
rearrangements leading to t(9;22) translocation
has been controversial, the non-random ar-
rangement of these interspersed repeats in the
BCRs is highly impressive [Papadopoulos et al.,
1990; Jeffs et al., 1998]. We also note that ALU
sequences have been recently implicated as
binding sites for a cohesin-chromatin-remodel-
ling complex [Hakimi et al., 2002]. It is inter-
esting in this context that the more exposed,
GC-rich chromatin regions flanked by cohesin-
binding AT-rich DNA segments fluctuating
along the chromosomal DNA with loop-size
periodicity have been suggested to correspond
to recombinational hotspots [Filipski and
Mucha, 2002]. The ALU elements found in six
of our sequences share the short motives with
breakpoints devoid of ALU and this repetitive
element was mapped immediately adjacent to
thebreakpoint itselfin some clones (see Fig. 3C).

The same parameters that exhibit sharp
transitions exactly at the breakpoints of our
sequences behave in an analogous fashion at
some, but not all, of the known BCR breakpoints
(data not shown). The fluctuation of one of these
parameters (twist angle) has been suggested to
be indicative of fragile, high-flexibility regions
[Mimori et al., 1999]. Although the immediate
sequence environment of the breakpoints ana-
lyzed here exhibit no preference for AT or GC, a
peculiar, symmetrical behavior of CpG dinu-
cleotide distribution was observed around sev-
eral (8/25) of the breakpoints (see Fig. 4E,F).
Interestingly, such patterns of CpG distribution
can also be observed in some hot-spots of BCR
rearrangement (not shown). These observa-
tions may be related to instances when the GC
and/or CpG content of the DNA appeared
to influence the propensity for the formation
of nuclease hypersensitive regions affecting
higher order chromatin organization [Mucha
et al., 2000].

In summary, the ~50 kb DNA fragments
obtained upon isolation of DNA from mamma-
lian chromatin by conventional procedures
appear to involve non-random sequences remi-
niscent of certain gene regions frequently impli-
cated in chromosomal rearrangements. Our

data support the possibility that the fragile/
hypersensitive regions involved in loop-size
fragmentation of chromatin derived from nor-
mal cells may be the substrates for gene rear-
rangements in a pathological scenario.
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