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Abstract. The key problem of bioinformatics is the prediction of properties, such as 
structure or function, based on similarity This chapter reviews the concepts and tools 
of similarity analysis used in various fields of bioinformatics. 

 
 
Introduction 
 
The concept of similarity is fundamental in the study of macromolecular structures, 
genomes, proteomes and metabolic pathways. Similar objects are often assumed to take 
part in similar mechanism, or to carry out a similar function. Similarity, on the other hand is 
a highly intuitive concept, and its use in various fields – such as the comparison of 
sequences or of 3-D structures – is quite different. For students of molecular biology it is 
sometimes difficult to find straightforward definitions of the basic concepts that originate 
from as diverse fields as cognitive psychology, systems science as well as various branches 
of mathematics. The motivation of this review is to provide a – not necessarily complete - 
compendium of useful concepts and definitions and to show the commonalities underlying 
the various applications. We will use three main forms of representations: sequences, 3-D 
structures and graphs. The discussion will be based on an entity-relationship description of 
macromolecular structures [1], as applied to the description of small molecules [2] as well 
as biological objects used in genome analysis [3]. 

Most concepts of molecular similarity have been proposed in applied contexts that 
are so numerous that an exhaustive coverage would detract from our focus on the 
underlying mathematical spaces. In particular, machine learning methodologies used in 
bioinformatics [4, 5], such as neural networks [6] and support vector machines [7] are 
based on specific concepts that in our view cannot be adequately described in the 
framework of a general discussion. Similarly, we could not include a practice-oriented 
overview of applications such as the comparison of sequences, 3D structures and genomes 
(a review on these topics will be published elsewhere [8]). Several fields that are gaining 
importance in bioinformatics, such as the analysis text similarities [9], could not be 
incorporated because of space limitations. Although a significant amount of research is thus 
excluded from this overview, a broad, and we hope to show, integrated body of research 
remains. 

The primary focus of this work is to present a set of useful definitions pertinent to 
the similarity analysis of macromolecular structures, meant as reference material for 
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advanced bioinformatics courses. Section 2 describes the basic concepts used in 
macromolecular similarity analysis, pointing out, whenever possible, the parallel concepts 
in other fields. Section 3 focuses on four distinct mathematical relationships, each of which 
constitutes a possible definition of similarity: equivalence, matching, partial ordering, and 
proximity. 
 
 
1. Basic concepts 
 
1.1 Model, description, analysis 
 
When we speak about molecules, what we mean are not physical entities, rather abstract 
models of reality. It is useful to distinguish three concepts underlying molecular data: 

The models are the conceptual structures or mental representations used to store 
information on molecules. These models never incorporate all of information available on a 
given macromolecule – the mere listing of the atoms and bonds in a macromolecule would 
be beyond the reach of human memory – rather we deal with a set of models of varying 
complexity, each describing a certain aspect of the molecular structure, such as linear 
sequence, domain topology, active site contacts, etc. 

Various formal and/or narrative descriptions of the data constitute the backbone of 
molecular databases. We can imagine the descriptions as the mathematical representation of 
a particular model. Similarity measures are calculated between descriptions (and not 
between models). 

The analysis covers everything we do with molecular data in such fields as 
molecular modelling, prediction, classification, similarity search, visualization etc. 
For example we may start noticing a new regularity when classifying the existing molecular 
descriptions (analysis). If this new feature “makes sense” (e.g. it points to a meaningful 
subclass of the objects) we may include this into our abstract model, and we may proceed to 
construct a new kind of description that includes the new feature. In a further round of 
analysis we may find new examples that contain the feature in question, in addition we may 
experiment with new feature candidates analogous or similar to the previously found 
features. As this cycle is repeated, the models and the descriptions undergo an evolutionary 
change, and in fact this is how databases develop [10]. 
 
 
1.2 Entities, relationships, structure and function 
 
In the first approximation, bioinformatics is concerned with the structure of protein and 
DNA molecules that fulfil functions in a series of interdependent systems such as pathways, 
cells, tissues, organs and organisms. This complex scenario can be best described with the 
concepts of systems theory (Figure 1). 
 

According to systems theory [11, 12], a system is a group of interacting elements 
functioning as a whole and distinguishable from its environment by recognizable 
boundaries Molecules can be regarded as such systems. Generally speaking, structure is 
fixed state of a system, and the study of a system usually starts with its characteristic 
structures that are recurrent in space or time. As structures are detected by recurrence, the 
symmetries (internal repetitions) are integral parts of structural descriptions. Using the 
terms of the previous paragraphs, systems are conceptual models of reality, while structures 
are descriptions. 
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Figure 1. Simplified overview of concepts underlying structural descriptions. 
 

Descriptions rely on elements (entities) and binary relationships between them [1, 
13] (Table 1). 

In the case of molecules, both the elements (substructures) and the relationships can 
be described in terms of systems of categories. The categories and the relations between 
them can be formalized into ontologies, which include the definitions of the elements as 
well as the operations that are possible within the system (Figure 2). Ontologies give 
itemized descriptions each functions and roles a molecule can fulfil, so it is a logically 
coherent world description. Entity-relationship-descriptions are generally applicable and 
can be extended to such concepts as similarity groups, vicinities and networks  (Figure 2). 
 

Table 1. Examples of models and descriptions 
 

System Entities Relationships 
a) Conceptual models of natural systems 
Molecules Atoms Atomic interactions 

(chemical bonds) 
Assemblies Proteins, DNA Molecular contacts 
Pathways Enzymes Chemical reactions 

(substrates/products) 
Genetic networks Genes Co-regulation 
b) Structural descriptions 
Protein structure Atoms Chemical bonds 
Protein structure Secondary structures Sequential and 

topological vicinity 
Folds Cα atoms Peptide bond 
Protein sequence Amino acid Sequential vicinity 

 
 
Elements and relationships can be described not only in terms of categories, but we 

can assign to them property descriptors, such as physicochemical, chemical descriptors. In 
terms of contents, there are two kinds of properties in proteins and DNA that deserve 
special attention. i) The position of an element (nucleotide, atom) can be defined either 
within the molecular chain (sequential position, with respect to the N-terminus, etc.) or in 
as 3-D coordinates.  ii) The function is a property or role that can be defined in the context 
of a higher level. E.g. “protease” is a function defined either in an in vitro (e.g. action on a 
certain substrate) or in vivo environment (e.g. role in complement activation). In addition to 
these two main classes, there are a whole list of properties that can be assigned to entities 
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and relationships within a model. In terms of mathematical form, the descriptors of the 
properties can be continuous, discrete or binary variables, even statements in human 
language. 
 

AssemblyNeighborhoodSimilarity group (Cluster)

Hierarchical TreeGenomeComplex 

Genetic network
Food network

Pathway

 
 

Figure 2 Molecular structures can be represented as entities and relationships [1, 
13].  Implicit to a structure is the description of the underlying concepts (entities and 
relationships as well as their properties), which can be summarized in an ontology 
[14].  The same principle can be extended to genomic and “systems biology” 
application. 

 
Entity/relationship models have been used in psychology as well. Erich Goldmeier’s 

“Similarity of visually perceived forms” defines similarity in terms of partial identities that 
may include a varying proportion of entities and relationships [15, 16]. If we apply this 
definition to molecular graphs such as shown in Figure 2, we arrive to a plausible 
definition: Two molecular graphs are similar if they have a common sub-graph (Figure 3). 
 

 
 

Figure 3 Molecular similarity as sub-graph isomorphism. Similarity of structures 
can be defined as a common sub-graph shared by two entity-relationship 
descriptions. 

 
 

Dedré Gentner [17] drew a map classifying the similarities of narrative descriptions 
(Figure 4a), which can be extended without difficulties to the description  of protein 
structures (Figure 4b). For example, molecular descriptions are considered identical if they 
consist of the same substructures and relationships. If two descriptions only share the 
substructures but not the relationship, they are identical in terms of composition only. If the 
relationships are identical, but not the substructures, we speak about equivalent topology. 
Alpha-helices (and other protein secondary structure elements) are examples for this kind 
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of partial identity, since in this case the identity of amino acid residues (i.e. the entities) is 
immaterial. All identities and similarities are true only at the given level of description (e.g. 
backbone conformation, amino acid composition, etc.). 
 

 
Figure 4. Identity, different kinds of similarity and non/identity can be pictured as 
regions in a plot of shared entities vs. shared relationships. This representation was 
developed by Dedré Gentner for narrative descriptions [17] (A), but can be extended 
to molecular descriptions as well (B). 

 
Figures 4 implies that similarity of two molecules can be captured if we can define 

equivalencies between their constituents, i.e. if we match the similar parts of the two 
descriptions to each other. Finding common substructures relies on matching, and some 
numerical parameter of matching is used in most cases as a measure of similarity. For 
example, two 3D structures are obviously similar if more than 90% of their alpha carbons 
can be superposed. We mention that matching is used not only for establishing similarity, 
but also for finding complementarity, such as surface-complementarity used in molecular 
docking, or strand-complementarity used in the analysis of anti-sense RNA. 

Based on the above concept we can define two further concepts, similarity groups 
and functional units.  The similarity group is such a group of molecules that are connected 
by structural similarity. This similarity can be local or global (see 2.3) or it can be general 
or specific (section 3.3). Biologically important similarity groups, such as those of protein 
domains belong to the latter class, as all group members are characterised by a common 
sequence-description or a common fold-description. 

Functional units denote a group of molecule that jointly fulfil a biological function. 
Enzymes, regulators and substrates of a metabolic pathway are examples of functional unit. 
Members of a functional unit are similar in their common function, but they do not need to 
be structurally similar. This is thus a contextual similarity, as opposed to the structural 
similarity. 
 
 
1.3 Elements of molecular descriptions 
 
1.3.1 Focusing of descriptions 
 
The entity-relationship framework and the underlying category definitions can be used to 
construct a very large number of description that can focus on various aspects of a 
molecular model [13].  One of the practical ways of generating simplified descriptions is to 
concentrate on parts of a molecule that are important for the actual goal of the analysis. 
Starting from a generalized theoretical model containing detailed descriptions of all entities 
and relationships in various forms, one can derive simplified descriptions by omitting some 
of the descriptors. For example, a hydrophobicity plot is a description of protein structure 
wherein the entities are amino acid residues described in terms of only two parameters, the 
sequence position and the residue hydrophobicity index. On the other hand fold 
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descriptions include only the Cα atoms of a protein, while surface descriptions include only 
those atoms in contact with the environment (solvent). But we may choose to use higher 
categories, such as domain-units instead or amino acid residues. TOPS cartoons are 
simplified description in which the entities are secondary structural elements; the 
relationships are topological links describing sequential or spatial vicinities. 
 

Table 3. An example of simplified descriptions 
 

 
 
 
 
 
 
 
 
 
 

Another avenue of fine-tuning consists in decreasing the detail - the resolution - of 
the descriptors (Table 3). For example, residue hydrophobicity can be described in 
quantitative terms, using a hydrophobicity scale (with continuous variable represented as a 
real number) or qualitatively (discrete variable, represented as 0 or 1 or with categories 
“hydrophobic” and “hydrophilic”). 

The intuitive concept of resolution also refers to the number of categories used in a 
given description. An amino acid composition is a vector in a 20-dimensional space, and 
since most proteins contain all of the amino acids, all the components of the vector are non-
zero. On the other hand, we have 400 dipeptides and 8000 tripeptides. In a tripeptide-based 
composition, however, many (or most) of the components would be zero or 1. Very high-
resolution descriptions are highly characteristic “fingerprints” that can be used to identify 
individual structures. For example, mass spectra are efficiently identified by the 
presence/absence of their constituent peaks, and similarly, small molecular structures can 
be retrieved from databases using queries constructed from their constituent fragments. On 
the other hand, high-resolution fingerprints cannot be easily generalized to similar 
molecules, so the resolution of the descriptions has to be optimized so as to include the 
right scope of similar descriptions. 
 
 
1.3.2 Kinds of descriptors 
 
Descriptors can be categorized according to their contents. On the one hand we have 
various levels, such as atoms, residues, secondary structure element, domain etc. Whether 
we talk about DNA or about proteins, there is an apparent lowest level that is not divided 
into further categories. For example, structural biology is rarely concerned with particles 
below the atomic level, while molecular biologists use nucleotides and amino acids as the 
lowest level. Higher-order units can be built up from the lower levels. In most cases the 
higher units are non/overlapping, i.e. one atom can be part only with one residue. On the 
other hand we use overlapping fragment descriptions as well, for example nucleotide 
sequences can be described in terms of overlapping di- or trinucleotide words, protein 3D 
structures can be described as peptide fragments. 

We use the term “structured descriptions” for those descriptions that contain both 
entities and relationships. Protein 3-D structures and sequences are such descriptions even 
though the relationships are not explicitly included in the actual descriptions found in 

Model Descriptor 
 Position Hidrophobicity 
Hidrophobicity  plot  + Real number  
Hidrophobic segments + Discrete (0 or 1) 
Average 
hydrophobicity 

- Real number 

Hydrophobic character - “Hydrophobic”/“Hydrophilic” 
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databases. For example, the atoms are named in PDB files, but the connectivity of atoms in 
amino acids is not part of the database, it rather has to be included in the program reading 
the database entries.  If a description contains only entities or only relationships, we term it 
an “unstructured description”. Examples include amino acid composition (only entities) 
and Cα distance-distributions (only relationships). 

Finally, descriptors can be classified also depending on what they refer to. 
Descriptors referring to an entire molecule are global descriptors, such as a protein 
function. Local descriptors, such as the role of a domain within the protein are local 
descriptors. 
 
 
1.4 Overview of macromolecular descriptions 
 
Based on the concepts introduced in the preceding sections we can now attempt to classify 
the molecular descriptions. One simple classification distinguishes 1D, 2D and 3D 
descriptions. 1D descriptions, such as sequences and hydrophobicity plots, are residue-
based, and include only the chain-topology. 2D descriptions are graph-like and include 
relations in addition to the chain topology (e.g. helical circle and helical net diagrams 
provide a symbolic view of the 3D arrangements). 3D descriptions are those in which 
Cartesian coordinates are included among the descriptors. 

A more detailed classification is possible according to the mathematical machinery. 
This classification essentially follows that of Johnson set up for small molecules [2, 18]. 

The most complete description is a generalized labelled graph in which both the 
vertices, and the edges can be provided with arbitrary labels such as numbers, vectors, 
names even statements in human language. Labels can be attached to individual entities or 
to groups of them (such as segments of a polypeptide chain). This is a hypothetical, multi-
level description that is best approximated by a well-annotated 3D database record that is 
cross-referenced to (possibly all) the available biological databases. Such variable-level 
descriptions are rarely used for comparison. The 3D comparison programs of Sali and 
Blundell are one of the few exceptions, they use a hierarchy of levels such as atoms, 
residues, secondary structures and domains [19, 20]. 

3D structures contain atoms and entities provided with Cartesian coordinates as 
descriptors, as well a chemical (covalent) connectivity. This description is used by most of 
the molecular modelling and structure comparison programs. Structural databases contain 
the entities and their labels; the connectivity maps are included with the analysis programs. 

Distance matrices. Distances calculated between the elements of the same structure 
constitute a distance matrix. In 3D structures, one can use the positional coordinates to 
define distance vectors, whereas the number of edges between two nodes can be used to 
define a distance in a graph. Both are extensively used in similarity analysis. 

Finite sequences. All graphs can be represented in terms of finite sequences. A 
protein sequence is a special graph where the residues are the entities and the polypeptide 
chain connectivities are the edges. 1D plots (such as the hydrophobicity plot) can be 
derived from an amino acid sequence by representing one single numeric parameter as a 
function of the residue position. This parameter can be either an experimentally determined 
value (such as a physicochemical parameter, or a quantity computed from the sequence or 
from the 3D structure. 

Surfaces used for proteins include the Van der Waals surface or the electrostatic 
surfaces that are computable from the 3D structure. Surface similarity analysis is not 
included in this review, an excellent review is in [21-23]. 

Integrable scalar fields. In this representation the molecule is treated as a spatial 
distribution of a single quantity, such as electron density or mass density [24]. 
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Transforms. There are various methods to calculate topological transforms from 
graphs. Fourier transforms of 1D sequence plots have been used to identify amphifilic 
regions in proteins, as well as to compare proteins. 

Finite sets are unstructured descriptors that can be obtained e.g. by omitting all 
relationships from a labeled graph. The resulting set of entities provides description that can 
be ordered according to kinds. A typical example is the amino acid composition, or other 
fragment-composition type descriptions (dipeptide, tripeptide etc. compositions). This is a 
vector-representation, the parameters of the vector corresponds to the number of times a 
certain entity is present in a structure A subcase of finite set descriptions consists in 
reducing the set of entities to a set (list) of kinds. This can be achieved by omitting the 
numbers from a compositional description. 

Distributions. A vector consisting of nonnegative numbers that sum to unity 
constitutes a parameter vector of a multinomial distribution. A typical example is the amino 
acid composition expressed in percentages, or the distribution of inter-atomic distances 
within a protein structure, or distribution of connectivity degrees in large networks. 

Vectors, product spaces. In addition to the special vectors mentioned in 5 and 6, 
arbitrary parameters of a given molecules can be assembled into vectorial descriptions. 
Such complex descriptions are used as input in machine-learning, and are also often used in 
general pattern-recognition applications. 

Real numbers (molecular sizes, molecular weight etc.) are perhaps the simplest 
descriptors of molecules. 
 
 
2. Mathematical concepts related to similarity 
 
2.1 Relations 
 
2.1.1 Equivalence 
 
Equivalence relations (denoted here by “≅”) are related to the commonly used term of 
identity. Strictly speaking, a molecule can only be identical with itself; here we are 
concerned with the cases when two molecules have identical mathematical descriptions, 
which does not mean that they are identical. For example, two proteins that have an 
identical description in terms of amino acid sequence may undergo phosphorylation or 
other posttranslational modifications at different sequence positions). 

Equivalence relations in mathematics are defined by three properties: reflexivity, 
symmetry, and transitivity. A relation is reflexive if A ≅ A for all molecular descriptions A. 
It is symmetric if A ≅ B implies B ≅ A. It is transitive if A ≅ B, and B ≅ C implies A ≅ C. 
Let [A] denote the family of those molecules equivalent to A with respect to ≅. If B denotes 
some other molecule, it can be proven mathematically that either [A] and [B] denote the 
same set of molecules or the two sets have no members in common. The set [A] is called an 
equivalence class. For example two proteins are considered identical if and only if their 
(amino-acid) sequences are the same. It is noted that “identity” refers to a given description; 
in this example the potential differences in post-translational modifications are disregarded. 
 
 
2.1.2 Partial ordering 
 
Partial ordering relations are related to the commonly used terms “to be a substructure of”, 
“to be a part of”. A relation ≤ is called a partial order if it is reflexive, antisymmetric, and 
transitive. The reflexive and transitive properties of a relation were defined earlier. A 
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relation is antisymmetric if A ≤ B and B ≤ A implies that A and B are identical. For 
example if A ≤ B means that A is a subsequence of B, then ≤ is a partial ordering relation. 
 
 
 

 
Figure 5. Similarity of molecules can be considered either a tolerance relationship 
(A), or an equivalence relationship (B) depending on whether or not the basis of 
similarity – the shared substructure – is fixed. 

 
 
2.1.3 Tolerance, general and specific similarity 
 
Tolerance relations denote the common sense situation in which two things have a common 
part or feature, or two structures share a common substructure. A relation ~ is called a 
tolerance if it is reflexive, symmetrical, but – in contrast to equivalence relations – not 
necessarily transitive. In other words, A~A, A~B implies B~A. Tolerance comes closest to 
the common sense concept of similarity, however there is an important distinction to be 
made. Based on the psychological concept of Goldmeier [15, 16], we can call two 
structures similar if they share some common substructure (see Figure 3, above). This 
general similarity is not transitive, as shown in Figure 5a, it is in fact a tolerance 
relationship. On the contrary, we may use the term specific similarity, if two structures 
share a well-defined substructure (feature). Fixing the shared substructure renders the 
relationship transitive, so specific similarity is an equivalence relationship (Figure 5b). 
 

If biological sequences are found similar to each other by BLAST, this is a general 
similarity, i.e. it is not necessarily true that all of them share a subsequence, such as a 
protein domain. However, those sequences that turn out to share a common subsequence 
form an equivalence class. It is noted that a “common subsequence” is often defined in an 
empirical way: biologists usually decide based on their prior knowledge whether or not a 
subsequence of a protein is a true member of a domain group (like EGF domains), and once 
a positive decision is made, the protein sequence is accepted as a member of the 
equivalence class of EGF-containing proteins. We might say that evaluation of BLAST 
searches consists in distinguishing general and specific similarity. 

The use of relations in chemical structure analysis is reviewed in [2, 18]. 
 
 
2.2 Proximity measures 
 
Proximity measures (PM) are numeric measures designed to characterize similarity or 
dissimilarity of two molecular descriptions. Two general types of proximity measures are in 
use. Similarity measures are high for similar molecules and low for dissimilar ones. The 
distance measures, on the other hand are zero for identical molecular descriptions and high 
for dissimilar ones. In the foregoing we will use proximity measures, distance measures and 
similarity measures. 

Proximity measures can be used in vastly different contexts, and it is useful to 
define two situations that are common in bioinformatics applications. A) Simple proximity 
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between two objects is computable by an unequivocal algorithm. A distance of two stars in 
space is a good example. For instance, such measures are computed between unstructured 
descriptions like vectors. One can define simple proximity measures also for structured 
descriptions, provided the equivalences of the entities (residues, atoms) are a priori defined. 
The Hamming distance and rmsd are such measures for character strings and 3D structures 
respectively. They are based on straightforward algorithms for calculating a distance 
between the two objects. Such distances are often calculated between fragments of larger 
structures hence they are sometimes called fragment distances. B) Substructure proximity 
measures are computed between parts structured descriptions. They require a simple 
measure as well as an algorithm to select the “optimal substructure” in the two objects. For 
instance, the distance of two galaxies can be defined as the distance between their closest 
stars. In this case, we have to measure the distance between all possible pairs (simple 
proximity), and then select the smallest one. The two central problems of bioinformatics, – 
sequence alignment and 3D structural alignment – are substructure similarity problems. So 
instead of two objects, we need compare “galaxies of substructures” which is a compute 
intensive task. The complexity of the calculation is different (sequence alignment has a 
complexity O(n,m) while structural alignment is np-complete), but the the basic concepts of 
substructure selection matching– described in the subsequent paragraph 3.3 –  is common 
to both. The present section will concentrate mostly on simple proximity measures. We will 
follow the classification of Sneath and Sokal [25] who distinguished four classes proximity 
measures: distance coefficients, association coefficients, correlation coefficients and 
probabilistic coefficients. 
 
 
2.3 Distance measures 
 
Vector distance measures are perhaps the simplest class of similarity measures owing to 
their geometric interpretation. The most common is probably the Euclidean distance, 
which, for some pair of objects A and B, described by n-dimensional vectors Ai and Bi, 
respectively, is defined as: 
 
 
[1] 
 
 

This is a distance defined in the n-dimensional space. A simple variant of this 
formula is the average distance, which is simply the Euclidean distance divided by the 
number of dimensions, i.e., by n in this case. The generalization of the Euclidean distance 
leads to a class of metric distance functions called the Minkowski metrics, defined by the 
following general formula: 
 
 
[2] 
 
 

1=r  corresponds to the “city block” distance and 2=r  to the Euclidean distance. 
The so-called sup distance is the Minkowski metric of r = ∞ and corresponds to 
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Distance measures calculated between identical molecular descriptions (vectors) are 

zero, and may grow without limit for non-identical vectors. It is sometimes desirable to 
have bounded values, for example the so-called Canberra metric is defined as: 
 
 
[4] 
 
 
 
 
so it is zero for identical values but remains below unity for non-identical vectors. The 
metric properties of vector distance measures are important for clustering and for 
evolutionary studies. For M to be a metric (metric distance), the following criteria have to 
be fulfilled for all A, B, C from X: i) 0),( ≥BAM  the equality holding if and only if BA = ; 
ii) ),(),( ABMBAM = (symmetry); iii) ),(),(),( CAMCBMBAM ≥+  (triangular 
inequality). Metric properties are essential if a distance measure is to be used for clustering. 
A string similarity measures S (eqn. 5) is applicable to clustering if there is an associated 
distance measure )(SfM = that has metric properties. f  is a monotonous function, and 
distance measures such as 1-kS (where k is a constant) are routinely used in clustering 
applications. 
 
 
2.4 String similarity measures for biological sequences 
 
A special class of proximity measures, sequence similarity scores are used to quantify the 
matching (alignment) of protein and DNA sequences. The underlying mathematical concept 
is the string distance. Let us first concentrate on bit strings consisting of zero/one values. 
(Figure 6A). The Hamming distance is the number of (zero to one or one to zero) changes 
necessary to change string 1 to string 2. This can be used immediately for short character 
strings of identical length, with the condition that only exchanges are possible, gaps are not 
allowed. If we keep this condition, we can use a simple lookup table to store the costs of 
exchanging one character against another. The situation is the same if we use overlapping 
doublet or triplet words, etc. i.e. the Hamming distance is a simple distance that can be 
unequivocally computed based on lookup tables, because the matching of the two strings is 
considered unique. 

The situation is quite different if we match strings of arbitrary length and allow gaps 
(Figure 7). The string edit distance is defined as the minimal number of steps (insertions, 
deletions and replacements) necessary to transform one word into the other. The proximity 
measures used for biological sequences are defined as similarity coefficients (high values 
for similar, low for dissimilar sequences) and contain cost factors for residue substitutions 
as well as gaps (insertions, deletions). 
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Hamming distance

A
1: 01010010
    |||||
2: 11010001

B
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     ||
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Figure 6. The Hamming distance is the number of exchanges necessary to turn one 
string of bits or characters into another one (the number of positions not connected 
with a straight line).  It is assumed that the two strings are of identical length and 
that no alignment is necessary. The exchanges in character strings can have different 
costs, stored in a lookup table. In this case the value of the Hamming distance will 
be the sum of costs, rather than the number of the exchanges. 
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Range ofalignmentRange ofalignmentRange ofalignmentRange of alignment

Mismatch Gap
 

 
Figure 7. A string similarity measure can be defined as a sum of costs assigned to 
matches, replacements and gaps (insertions and deletions).  The two strings do not 
need to be of the same length. A string similarity measure between biological 
sequences is a maximum value calculated within a range of alignment. The 
maximum depends on the scoring system that includes a lookup table of costs, such 
as the Dayhoff matrix, and the costing of the gaps. 

 
The alignment used here is no longer unique, like in the case of a Hamming 

distance, and there are different (arbitrary) ways to cost gaps (different cost factors for gap 
opening and gap extension etc.). Establishing an alignment between two sequences consists 
in maximizing a similarity measure given in equation [5]. This problem can be solved if in 
addition to the formula of S we have a cost matrix for replacements and identities, or some 
other lookup table that contains the similarity/distance values of the elements used in the 
description. In the case of proteins, the cost factors of amino acid substitutions are included 
in the well-known Dayhoff and BLOSUM matrices, and there are several established 
strategies for costing the gaps – for recent reviews see (). The algorithm for finding a 
maximal similarity between two longer sequences is an optimization problem. The actual 
algorithms of similarity search are beyond our scope. The basic principle is mentioned in 
section 3.5, and some examples are given in section x.x. There are number of 
comprehensive reviews on this subject. 
 
 
2.5 The rmsd distance for protein 3-D structures 
 
A very popular quantity used to express the structural similarity of 3-D structures is the 
root-mean-square distance (rmsd) calculated between equivalent atoms, defined as 
 
 
[6] 
 N

d
rmsd i

i∑
=

2
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where d is the distance between each of the N pairs of equivalent atoms in two optimally 
superposed structures. For the calculation of rmsd a range of alignment has to be defined 
within which the matching of atoms (establishment or equivalent atoms within the two 
structures) is determined which is a computationally much harder problem than the 
alignment of sequences in one dimension. Once the equivalence of atoms is established, the 
optimal superposition has to be found which is carried out by such straightforward 
algorithms as that of Kabsch [26]. 

If the equivalences are fixed, then rmsd can be considered as a simple distance that 
can be computed with a straightforward algorithm. This is the case for instance when one 
compares different conformations of the same protein such as produced by NMR methods. 
In this case the equivalences of the atoms are a priori known, since each conformation 
consists of the same atoms. The rmsd is 0 for identical structures (identical conformations) 
while its value increases as the two structures become more divergent. In fact rmsd values 
are considered as reliable indicators structural variability when applied to very similar 
proteins (say rmsd < 5-6 A). But even in this case, the rmsd value obviously depends on the 
number of residues N included in the structural alignment. A statistical analysis of a large 
number of structures showed that the dependence can be described as: 
 
 
[7] 
 
 
where rmsd100 is a constant, an rmsd value standardized to 100 residues [27]. The rmsd 
values also depend on the crystallographic resolution, which is more difficult to take into 
consideration (Carugo, 2002). As a result, rmsd does not behave as a metric distance for 
divergent structures so it cannot be used in itself for automated clustering. Clearly, an rmsd 
value of, say 3 Å has a different significance for proteins of 500 residues and for those of 
50 residues, so e.g. the structural variability of fold types can not be easily compared 
(rmsd100 on the other hand may be useful for such comparisons[27]). In other terms, rmsd is 
a good indicator for structural identity, but less so for structural divergence. 

The algorithms for calculating rmsd are beyond our scope, the reader is referred to 
recent reviews [28]. The philosophy of the calculation depends on whether or not the 
alignment, i.e. the equivalences between residues (represented as Cα atoms) are known. If 
yes, the very popular algorithm of [26] and McLachlan (1978) can be used. If this is not the 
case, and when the two 3-D models that are compared are too different, there are two 
alternatives. Either a partial alignment is available or no a priori assumptions can be made. 
In the first case, few equivalences between atom pairs are assumed and they are extended 
(and some time rejected) through dynamic programming techniques [29]. In the other case 
an exhaustive search is performed by rotating and translating a 3-D model over the other in 
a six-dimensional way Diedrichs, 1995). 

It has to be noted that superposition of divergent protein 3-D structures is often a 
quite arbitrary exercise and various superposition algorithms may lead to completely 
different results. An effective, recently proposed procedure to reconcile different structural 
alignment procedures consists in an iterative reduction of the number of aligned Cα atom 
pairs [30]. After each superposition, the worse pair is eliminated and a new superposition is 
performed leading, eventually, to the identification of the protein core that shows a 
significant degree of similarity. 

Finally we mention that the rmsd distance does not allow the costing of gaps. For 
this reason, it can not be used directly for finding an optimum alignment between two 
arbitrary proteins. 
 

)
100

ln1(100
Nrmsdrmsd +=
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2.6 Association measures 
 
For the comparison of chemical graphs of small molecules, association measures are used 
almost as widely as distance measures [31]. The majority of these coefficients are intended 
for use with simple two-state, i.e., binary, variables which are conventionally coded as 0 or 
1 depending upon their presence or absence within an object description. Although these 
coefficients can be described in terms of a vector it is conceptually simpler to formulate the 
coefficients as follows. For two objects A and B let ab  be the number of attributes in 
common and ab  the number of attributes in neither in A nor in B. Let ba  and ba  be the 
number of attributes occurring in only in A or B, respectively. Let a and b the total number 
of attributes in A and B respectively. Let n be the total number of attributes, i.e. a+b. Two 
frequently used association coefficients are the Jaccard (also called Tanimoto) coefficient: 
 
 
[8] 
 
 
(which can also be written as baba ∪∩ / , the ratio of common attribute types to all 
attribute types) and the Dice coefficient  
 
 
[9] 
 
 

The coefficients may readily be generalised to non-binary data. For instance, if the 
data vectors contain the actual frequencies of occurrence of each fragment type, rather than 
their mere presence or absence, the Jaccard coefficient can be rewritten as 
 
 
 
[10] 
 
 
 
 

A related association measure is the so-called cosine coefficient that corresponds to 
the cosine of the angle between the vectors A and B:  

 
 
 
[11] 
 
 
 
2.7 Correlation measures 
 
Another widely used coefficient of similarity in cluster analysis has been the Pearson 
product-moment or correlation coefficient. Given two structures A and B, let A be the mean 
value for all of the variables in the vector A(and similarly B  for). Then the coefficient is 
defined as 
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[12] 
 
 
 

The correlation coefficient is 1 for identical vectors, is around zero of dissimilar 
vectors and is –1 for anticorrelated vectors (Ai= −Bi). A large number of related coefficients 
are given in [32, 33]. 
 
 
2.8 Probability based measures 
 
The final class of coefficients identified by Sneath and Sokal [25], probability based 
coefficients, take account of the frequency distribution of variables over the entire data set. 
Probability-based coefficients are less often used for small molecules, on the other hand 
they are the most often used method of scoring in biological sequence comparison. 
Probability-based measures are obtained by first calculating a raw proximity measure PM 
between a query and all members of a dataset. This is followed by rescaling the raw PM 
using knowledge on the distribution of scores. This operation places the PM values on a 
common scale and thus provides an obvious way to set significance threshold for the hits of 
interest. It is customary to distinguish “biologically meaningful” and “random” similarities. 
The former are those between evolutionarily (homologs, orthologs, paralogs) or structurally 
related proteins (molecules with a common fold), the rest of the similarities are usually 
considered “random”. 

One approach is based on the distribution of random similarities. If the distribution 
is known in analytical or numeric form, then the statistical significance of any computed 
measure – the probability P (0 ≤ P ≤ 1) for finding a given value in the given dataset by 
chance – can be estimated. Random similarities occur more likely for larger queries and for 
larger databases, so the description of random distributions usually includes query size and 
database size as variables. (The product query size x database size is sometimes referred to 
as the search space). Current biological databases provide a sufficiently large number of 
data for modeling the distribution of random similarities, and – at least for sequence data – 
various random shuffling techniques can be used to generate larger datasets. This approach 
thus consist in rescaling a proximity measure PM to give a probability P for a given search 
space. This P is called statistical significance, in other words, if the value of proximity 
measure lies far outside the distribution of random scores (P is very small), one tends to 
consider it biologically significant, and conversely, large P values indicate random 
similarities that are unimportant in the biological sense. 

Another approach relies on the distribution of the target similarities, i.e. the 
distribution of PM within a biologically important group of objects. Often there are not 
enough reliable data for the analytical modelling of this target distribution, and random 
shuffling techniques may not be easily applicable same as for random similarities. A 
compromise solution consists in concentrating on the distribution of biologically significant 
as well as random similarities in the neighbourhood of a target group[34, 35]. This 
approach relies on the fact that space defined by existing macromolecules is sparsely and 
unevenly populated (as compared to the hypothetical space of all possible molecules), and 
the neighbourhoods of existing similarity groups may be quite different. 

Further kinds of probabilistic coefficients can be obtained if one represents the 
objects themselves by some kind of a distribution, and then compares two distributions so 
as to obtain a probabilistic estimate of their identity [36]. There are established methods for 
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the comparison of distributions, such as the χ2 test and contingency table analysis, etc. [37] 
that all yield probability values between 0 and 1. 

Probability-based measures are widely used for the evaluation of prediction 
methods [32, 33]. Similarity measures for chemical structures have been reviewed by 
Willett [31]. 
 
 
2.9 Proximity measures for groups of objects 
 
Proximity measures originally defined to pairs of structural descriptions can be generalized 
to groups. Given a single description S and a group of descriptions [A]={A1, A2, …An), a 
proximity measure P(X,Y) between S and [A] can be defined using the P(S,Ai) values of the 
pairwise comparisons; for example, one can take the minimal, the maximal or the average 
of the P(S,Ai) values as the proximity measure between S and the group. Another possibility 
is to calculate from the descriptions Ai a “consensus value” <A>, sometimes called the 
centroid of [A]. If the descriptions are simple numeric values or vectors, <A> can be 
defined as their average. If Ai-s are vectors, <A> can be their vectorial average, etc. Then, 
the proximity measure between S and A can be calculated as P(S,<A>). 
Proximity measures between two groups of objects [A] and [B] can be defined in a similar 
way: we can take the minimum, maximum or average of the P(Ai,Bj) proximity measures, 
or determine the proximity of the two centroids, P(<A>,<B>). 
If a single object is compared to group [A] in terms of a feature f that is supposed to be 
normally distributed in [A], with mean m and standard deviation sd, then, instead of the 

simple difference mf −  we can use a scaled value 
sd

mf −
 for calculating a distance 

between an object and the group. Similarly, one can calculate a distance between two 
groups (denoted by upper indices 1 and 2, respectively) using the values 

2221

21

)()( sdsd

mm

+

−
. The resulting distance values will thus incorporate a natural scaling 

based on the different variance of the groups. This scaling can be generalized to cases in 
which the objects to be compared are represented as vectors of features f1, f2 …fn 
characterized by a covariance matrix C. In this case, the so-called Mahalanobis distance is 
defined as: 
 
 
[13] 
 
 
where m1 and m2 are average vectors for group 1 and group 2, respectively, )'( 21 mm −  is 
the transpose of )( 21 mm −  and C^ is the inverse of the variance-covariance matrix C. MD 
can be viewed as an Euclidean distance scaled by the covariance matrix, the latter being 
assumed to be identical for both groups. 
 
 
3. Matching (alignment) 
 
For two structures to be similar, one has to find a matching in terms of entities and 
relationships. Such a matching is shown in Figure 3. A matching resembles an analogy. In 

)(^)'( 2121 mmCmmMD −−=
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an analogy, features of one object are paired with features of another object. Which features 
are paired is often a subjective choice. Matching of molecular structure relies in comparing 
molecular descriptions finding an optimal match between the features of the mathematical 
representations. 

The simplest example of matching is the alignment of short character strings of 
equal length described in Figure 6. Another example is to find the exact occurrence of a 
short character string query within another, longer string. 

With these examples one can illustrate, without formal definition, some of the 
important properties of matching used in bioinformatics. Given two descriptions A, B 
consisting of i and j elements, respectively, let’s define a mapping m: A B that assigns 
certain k elements in A to certain l elements in B; it is not necessary that all elements in A 
have an element assigned in B and vice versa. In the simplest case, the mapping is one-to-
one, so certain elements in A will have a pair in B (so k=l). In other cases, we may get 
multiple matching. 

Types of alignments. From the philosophical point of view, matching (alignments) 
of structural descriptions can arise from three specific sources. i) Due to prior knowledge, 
only some parts of the molecules are considered when establishing a matching. For 
example, backbone atoms of a protein must match backbone atoms of the other protein, 
when the 3-D structures are compared. ii) If we deal with unstructured descriptions, such as 
vectors, the elements – the vector components – match by definition, which is called 
canonical matching; iii) Finally, we might be interested in the maximal matching of two 
larger structures given in the form of structured descriptions (consisting of both entities and 
relationships), and then we need an optimizeable similarity measure such as in equation 5, 
in order to find a maximal alignment. The number of all possible alignments is very high, 
so finding the optimum is often very compute-intensive and sometimes intractable problem. 

Algorithmic solutions From the algorithmic point of view, the methods can be 
subdivided a) according to the structure types (character strings, graphs, 3D structures), b) 
according to the nature of the matches that are being sought (exact matching, approximate 
matching), or according to number of partners compared (pairwise alignments or multiple 
alignments). 

The majority of algorithms can cope only with the simplest descriptions, character 
sequences. Finding exact matches between two sequences of n and m characters 
respectively, has a complexity of O(n,m). Comparison of graphs is much more difficult, 
here the majority of the problems are NP complete, i.e. computationally not tractable.  
Identity of graphs is determined by graph isomorphism algorithms, and similarity of graphs 
(such as protein structures, metabolic pathways) is a subgraph isomorphism problem, which 
is more difficult, and is aggravated by the fact that the structures in question are labelled 
graphs. Rigorous comparison of complex descriptions such as 3D structures is np-hard. 

Excessive computer times diminished if we use unstructured descriptions that do not 
need an alignment for comparison. These descriptions are simpler, and perform well only if 
one can find an adequate resolution, such as a multidimensional vector. The calculations are 
fast, but there is no guarantee that the results will be similar to those produced by alignment 
methods. On the other hand, such methods are useful as preliminary filters used to screen 
large databases. 

Heuristic solutions provide the second general avenue for diminishing computer 
times. Most of the alignment methods use some kind of heuristics. There are two important 
heuristics that are used to simplify the process of alignment, the principle of linearity and 
the use of higher order descriptions. 

The principle of linearity is based on the chain-like topology of protein and DNA 
molecules. All biologically important alignments contain short stretches that are very 
similar or identical between the two molecules. So instead of testing all possible 
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alignments, one can start identifying the highly similar chain segments and then combining 
them into larger alignment, which is computationally much less expensive. This philosophy 
it can be used both for sequences and for 3-D chain. Let A and B be polypeptide chains of l 
and k residues, respectively, and n

iA denote a contiguous fragment of n residues of protein A 
starting at residue i. In this case, ][ nA = nA1 , nA2 … n

nlA 1+− will be an ordered list of 
overlapping fragment descriptions covering the entire chain of protein A. Let’s provide such 
a list for both proteins and compare the fragments using a proximity measure 

),(,
n
j

n
iji BAPMPM = . PM must be a proximity measure that can be unequivocally 

determined for any two fragments. In most cases this means that no alignment is needed 
between fragments compared (alignment and gaps would make the process prohibitively 
expensive). In some cases the precomputed or a priori known values of PM are stored in 
lookup tables. jiPM , values define a so-called similarity matrix, which is a symmetrical 
matrix of k x l elements  (more accurately (l-n+1)x(k-n+1) elements). If jiPM ,  is a 
similarity measure, similar segments within two proteins appear as series of large values 
parallel to the diagonal of the matrix. The similarity matrix is used – under various names – 
for the determination of an overall alignment in several algorithms, many of which use 
dynamic programming techniques. Global alignments that extend from the beginning to the 
end of both sequences are found via an exhaustive search for the maximal matching, based 
on such methods as the Needleman-Wunsch algorithm [38]. Local alignments can be found 
via similar strategies, such as the Smith-Waterman and the Sellers [39] algorithms, as well 
as by heuristic solutions such as the FASTA and the BLAST algorithms. 

All of these algorithms were developed for sequence alignment, where the 
fragments are overlapping n-words of amino acids, the scoring is be based on a sequence 
similarity score such as in equation 5. Naturally, one can also use 3-D description of the 
backbone for longer peptide segments of 3D structures, and use the rmsd distance for 
comparison. The actual algorithms are problem dependent, further examples are given in 
section 4. 

The principle of higher order descriptions is based on the simple fact that comparing 
a smaller number of higher-order elements takes less time. The best example is the 
comparison of protein structures in terms of secondary structure elements. In addition to 
decreased computer time, higher order descriptions, such as secondary structure elements 
incorporate a great deal of human knowledge. As a consequence, the results of comparisons 
are usually close to human understanding. 

Finally we mention that alignment is an optimisation problem, so all optimisation 
algorithms can be used for aligning structures. The optimum is understood in the context of 
the chosen representation and scoring scheme and may involve parameters that have to be 
adjusted on an empirical basis. Most users would therefore agree that alignments produced 
by computer programs can always be improved upon visual inspection. 
 
 
4. Similarity spaces 
 
In the foregoing, we reviewed the mathematical concepts relevant to the definition of 
similarity in bioinformatics: equivalence, matching, partial ordering, and proximity. These 
relationships arise in the context of a mathematical space. A mathematical space suitable 
for molecular similarity analysis is called a molecular similarity space and is defined to 
consist of a) a set of mathematical representations of molecules and b) one or more 
similarity relationships defined on this set. For example, one of the possible protein 
similarity spaces contains the sequences as representations, plus a set of equivalence 
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classes, each containing members of a protein family. It is assumed that a sequence 
similarity measure is also defined on the set of sequences. Another similarity space used for 
proteins consists of the structures or protein folds as descriptors, a set of equivalence 
classes, each containing members of a specific fold group. A distance function, such as 
rmsd is defined on the set of fold structures. 

The co-existence of a priori known (biologically relevant) classification schemes 
and computable proximity measures is characteristic of the similarity spaces studied by 
bioinformatics. In the typical case, the database also contains a large number of unclassified 
objects (sequences, structures), and much effort is put into either founding new classes for 
some of these objects, or trying to fit them into one of the existing categories. It is noted 
that a proximity measure can be used to establish a computable classification using one of 
the many clustering methods. In a fortunate case the computed clustering is consistent to 
the a priori known classification, and the potential new clusters that have no a priori 
known counterparts are excellent candidates for discovering new, biologically relevant 
classes. 

Methods for representing a priori known categories can be grouped according to the 
nature of description used for the individual categories [40]. Classical summary 
descriptions are consensus descriptions that are valid for all members of a category. 
Probabilistic summary descriptions are valid only with some probability. Consensus 
descriptions such as sequence patterns can be pictured as the description of a prototype in 
the given class. In contrast to consensus descriptions, exemplar-based descriptions 
represent the categories as a database consisting of the members of the category. All of 
these methods have been used e.g. for protein domain sequences. Domain sequence 
collections and domain annotations in protein sequence databases are exemplar-based 
descriptions. Regular expressions are classical summary (consensus) descriptions that are 
supposed to be valid for all members, and there is a variety of statistical (probabilistic) 
descriptions [40]. 

The problem of classification is one of the fundamental exercises in such fields a 
domain sequence identification, or function prediction. Given a set of classes Ai in a 
database, the classification of a sequence is often based on minimal distance (or maximum 
similarity). Oftentimes, the class Ai of the closest object [ ( )i

jji ASPM ,min , ] is 
automatically assigned to an unclassified object. In other cases, the closest class is 
determined from the consensus-representations of the classes, using ( )i

i ASPM ><,min . 
The use of mathematical spaces in the analysis of chemical structures is reviewed in [2, 18]. 
 
 
5. Conclusions 
 
Summarizing we can conclude that the description of structures as entity-relationship 
networks provides a simple framework to describe the use of similarity in various fields. 
There are a number of qualitative concepts, such as similarity groups (equivalence classes), 
patterns as well as quantitative concepts, such as similarity measures that are present in all 
fields. Mathematical spaces (“similarity spaces”) provide a way for describing databases as 
well as the mathematical tools of analysis in a common framework.  The definitions listed 
in this review are applicable in other fields of bioinformatics not explicitly mentioned in 
this review, such as the analysis semantic similarities [9] or the analysis of networks [41]. 
An overview of practical applications will be published in a subsequent chapter in this 
volume [8]. 

The description of structures as entity-relationship networks provides a simple 
framework to describe the use of similarity in various fields. There are a number of 
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qualitative concepts, such as similarity groups (equivalence classes), patterns and 
quantitative concepts, such as similarity measures that are present in all fields. 
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