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Abstract. The analysis of similarity is a fundamental task in comparing sequences, 
three dimensional structures as well as genomes and molecular networks. This 
chapter reviews the common principles underlying these diverse applications.  

 
 
Introduction 
 
The basic concepts of similarity analysis – as presented in the first part of this review – 
provide a common framework for the classification of newly identified the protein 
sequence or protein 3D structure. Classification of an object implies placing it into the 
already existing categories or marking it as “unknown” i.e. as a potential initiator of a new 
category. This process usually consists of the following steps. 

Recognition of similarity. This is a qualitative decision that is often based on some 
approximate quantitative measure. In sequence analysis, if the raw alignment score is above 
a threshold, the similarity is considered significant and retained for further analysis. In the 
case of protein 3-D structures the preliminary evaluation is often based on visual 
inspection. 

Next, the basis of similarity, i.e. a common substructure is identified. This is carried 
out by matching of the equivalent entities and relationships, and sequence alignments as 
well as structural alignments are the best examples. Determination of matching by 
computers involves maximization of a similarity measure (or minimization of a distance 
measure), and the final value of the respective parameters is used as a numeric measure of 
similarity. 

Evaluation of similarity. First a decision has to be made whether or not the 
similarity is biologically important, and the protein is either assigned to a known similarity 
group or it will be considered as the initiator of a new group. This decision is usually based 
on one or more similarity scores as well as on the alignment, but human judgment is hard to 
replace and at this stage. 

Representation of similarity in databases. Once the similarity is established, it has 
to be added to the annotation of the protein in the sequence and or 3-D databases. Protein 
superfamilies, structural domains, orthologous groups etc. are determined by similarity 
analysis, and there is large number of secondary databases that are dedicated to the curation 
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of the underlying similarity groups. Apart from narrative descriptions there are two general 
avenues to describe similarity groups. Cladograms are classifications that can be 
established using proximity measures and represent the internal structure of the similarity 
group. Common patterns on the other hand are usually derived from alignments and 
represent common substructures present in the members of the similarity group. 

The above steps are not always obvious for the users. For example, sequence 
similarity search programs present the results corresponding to step II, while some of the 3-
D similarity search servers provide only a qualitative suggestion corresponding to step I. 
What is apparent however that all methods include a preliminary, approximate estimation 
of similarity, followed by a filtering and finally an alignment step. 

This section provides a brief overview of how similarity scoring in used in the 
comparison of sequences, protein 3-D structures and entire genomes. In these fields, 
similarity measures are used for database searching, for classification and for phylogenetic 
analysis. A comprehensive overview of these broad fields would be far beyond the scope of 
this chapter. Instead, we will attempt to highlight, using the terminology introduced in the 
previous sections, the common themes underlying these three diverse areas. 
 
 
1. Sequence comparison 
 
Sequences are the simplest descriptions of macromolecules that use residues (amino acids, 
nucleotides) as entities and sequential vicinity as the only relationship between them. 
Sequence comparison algorithms use essentially the same principle for similarity scoring. 
The simple proximity measure is related to the Hamming distance (i.e. no gaps allowed, as 
shown in Fig. 3.2). The scoring matrices used in DNA as well as protein comparisons are 
constructed in such a way that similar residues give high scores, so the resulting measure 
can be called a Hamming similarity measure, rather than a distance. The optimizable 
substructure similarity is the string similarity measure (equation 5) in which the position 
and number of the gaps as well as the range of alignment is determined by optimization. 
The result is a maximal matching, and the alignment score is a local or global maximum 
value depending on the algorithm used. Algorithms of global alignment (Needleman-
Wunsch, [1]) or local alignment (FASTA [2], BLAST [3],) have been the subject of several 
excellent, recent reviews [see, e.g. [4,5]], the current section focuses on the principles of 
scoring, i.e. how a similarity score is transformed into a probabilistic measure. 

We will use a simple classification: General methods of comparison use a general 
statistical description of random similarities for calculating the significance value to 
alignment scores. Specific methods use application-specific descriptions of the biologically 
important target groups, such as protein families, domain sequence groups etc. These 
groups are often too small for statistics, so specific methods rely instead on additional, a 
priori knowledge. 

The most frequently used general methods (BLAST [3], FASTA [2], Smith-
Waterman [6]) are based on local sequence alignment. The resulting sequence similarity 
scores do not preserve the metric properties (can not be converted into metric distances), on 
the other hand they have the advantage that the distribution of random similarities can be 
described in an analytical form. This is because scores are maximal values, and the 
maximum of a large number of independent identically distributed (i.i.d) random variables 
tends to an extreme value (or Gumbell) distribution, just as the sum of a large number of 
i.i.d. random variables tends to a normal distribution [7]. The underlying statistics was 
described in detail by Karlin and Altschul [8,9] for the BLAST program. Originally, BLAST 
used local alignments without gaps called high-scoring segment pair (or HSP), in which 
scores were maximized in the sense that they could not be further improved by extension or 
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trimming. We will use HSPs as an example, adding that the description of gapped BLAST, 
FASTA and Smith/Waterman scores follows a similar statistics. The random emergence of 
HSPs was studied on random sequences in which the occurrence amino acid residues is 
independent, with specific background probabilities for the various residues. For two 
sufficiently long (m and n) sequences, the expected number of HSPs with score at least S is 
given by the formula 

 
[1] 
 
where K and ?  are constants that can be considered a can be as natural scales for the search 
space of size nm ? and the scoring system. The raw score S is defined by a formula given 
in figure x. The number of random HSPs with score ?  S is described by a Poisson 
distribution and the probability of finding at least one such HSP is 
 
[2] 
 

P is the statistical significance, the probability of finding a score S (or bigger) by 
chance. It is important to note that this simple statistics is also approximately valid for 
gapped alignments used by modern alignment programs, and this makes it possible to give 
a more objective, probabilistic interpretation to similarity scores. 

Global alignments are found via an exhaustive search for the maximal matching 
between two sequences, based on such methods as the Needleman-Wunsch algorithm [1]. 
Global alignment scores can be transformed to metric distance scores, which is important 
for clustering. On the other hand, very little is known about the random distribution of 
optimal global alignment scores, so a rigorous probabilistic interpretation is not possible in 
this case. A practical approach is based on generating many random sequence pairs of the 
appropriate length and composition, and calculating the optimal alignment score for each. 
The average Sr and the standard deviation ? r of the random scores can then be compared 
with original score S score, and a Z score 
 
[3] 
 
 
can be used as an approximate measure of significance. Namely, even though Z resembles 
the Student t value, but rigorously speaking it cannot be converted into a P value since the 
underlying distribution is not a normal distribution. Only an approximate interpretation is 
thus possible, for example if 100 random alignments have scores inferior to the alignment 
of interest, the P-value in question is likely less than 0.01. It is important to note that the 
meaning of this statistics is different from the one derived from a database of random 
similarities (equation 16). Namely, for two sequences of similar, but unusual amino acid 
composition, the Z-score may be a low value, even is the two sequences compared are both 
very different from the rest of the database. 

The general methods of sequence comparison can be used to divide the sequence 
database into clusters. In principle, a metric distance measure (such as can be derived from 
global alignment scores) is a prerequisite for statistical clustering. Given the large size of 
databases, both global alignments and statistical clustering methods are compute- intensive. 
On the other hand, the protein sequence space is sparsely populated and the existing natural 
sequences form well-separated clusters, which makes it possible to use efficient, 
approximate methods for clustering. Krause and Vingron used a threshold-based, iterative 
procedure based on BLAST for identifying consistent protein clusters [10,11]. The result an 
objective picture of the sequence space in terms of similarities, but the clusters have to be 
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compared with knowledge based groups, such as protein families etc. With this approach, 
protein domains that are shared among several protein families lead to the merging of 
protein family clusters. 

A sharp distinction between biologically significant and random similarities is not 
possible from the scores alone – such decisions still require a priori knowledge, namely 
biological knowledge (e.g. knowledge of the overall domain structure of the protein, the 
exon-structure of the genes) as well as a knowledge of the previously known similar 
sequences. In addition to the general methods of sequence comparison mentioned above, 
there are a number of dedicated specific methods, based on some explicit representation of 
biologically important similarity groups such as protein domain sequences. A sequence 
similarity group can be represented by a consensus description that represents e.g. a 
sequence pattern that is shared by all members of the group. As such patterns can be 
obtained by multiple sequence alignments, there is a large variety of algorithms that 
represent multiple alignments in terms of consensus sequences, regular expressions, 
position-specific scoring matrices or profiles, hidden Markov models (HMMs) or neural 
networks (for recent reviews see [5,12]). These consensus descriptions can then be used to 
decide whether or not a new query sequence is member of a given similarity group. The 
similarity measures used to compare a query with these representations are similar to the 
ones described in this review, the details can be found in the original publications as well as 
the reviews cited above. 

Another group of specific approaches uses a graph-theoretical representation of 
similarity groups, which is an exemplar-based description. Sequences within a similarity 
group are related to each other by specific similarity (Figure 3.1.), for example each 
member of the group is related to at least one other member with a similarity score greater 
that a certain threshold [13]. Protein domains are typical examples of well-defined 
similarity groups. On the other hand, many of the known proteins are composed of 
modules, so the score determined between two such proteins will express the similarity of 
the building blocks, rather than that of the two proteins. 

The similarities of protein domain groups can be defined on a threshold basis. In the 
SBASE protein domain sequence library, a sequence is considered as member of a domain 
group if it is similar to at least NSDt members of the group, with an average similarity score 
of AVSt where NSDt and AVSt are threshold values automatically determined from a 
database vs. database comparison with the BLAST program. A later extension of this 
scoring system takes into consideration the distribution of similarity scores in the 
neighborhood of each similarity group and uses a probabilistic score. For each raw scores, 
four probability values are read from the precomputed distributions shown in Figure 1, and 
the score is derived from the sum of these distributions [14]. From the computational point 
of view, this approach is similar to the memory-based computing paradigm [15], the 
memory of the system is a database vs. database comparison [16,17]. 

The approach underlying the COG (Clusters of Orthologous Sequences) databank is 
based on grouping sequences together that are mutually the nearest neighbours of each 
other in terms of sequence similarity score [18]. Such tight groups or cliques can be 
extended to larger similarity groups, which is the basis of identifying orthologous proteins. 
This approach is especially successful in prokaryotic genomes in which multidomain 
proteins are not abundant. 

Recent approaches combine many of the previous concepts. The underlying 
philosophy is that database search results should contain all information necessary to find 
distant similarities – such as the weak similarities of protein domains – and that these might 
be found via a clever sorting of the search results. Namely, the alignment scores (an the P  
values) traditionally used to sort the result constitute only one dimension of the sorting. 
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Figure 1. The principle of classifying domains in SBASE [14] (See text for 
explanations). 

 
 
Alignments can be sorted according to their position within the query, as well as 

according to their common sequence patterns. Recent versions of BLAST, incorporate 
position specific scoring known from profile methods (PSI-BLAST) as well as pattern-
specific searches (PHI-BLAST) [19-21]. 

Given the ease and speed of current sequence alignment algorithms, approximate 
methods based on unstructured descriptions are used only in specific applications. In 
composition-based methods, the sequences are described as vectors, in terms of the amino 
acid, dipeptide, tripeptide etc. composition, and the comparison is based on simple 
distances such as the Euclidean distance. Same as with other unstructured descriptors, the 
calculation is very fast, especially since the database can be stored in the form of pre-
calculated vectors. The number of vector components (the resolution of the description) has 
to be selected with care, and this is done either heuristically, or using an algorithm to 
automatically select and/or weight those amino acid words that give the best separation 
between a test group and a control group. In this manner group-specific distance functions 
can be developed. The resolution of the description can be fine-tuned e.g. by decreasing the 
amino acid alphabet (to 4,5, etc. letter alphabets instead of 20) and or by increasing the 
word size (dipeptides, gapped dipeptides, tripeptides etc.). Examples include the 
composition-based protein sequence search of Hobohm and Sander [22], as well as the 
promoter-search program of Werner et al. [23-25]. Simple applications include the 
recognition of coding regions based on codon-usage. Composition-based methods are very 
useful for building recognizers for any sequence group for which a sufficient  number of 
examples are known. Given a test group and a control group of sequences, one can compare 
the frequency of arbitrary words (provided as a list) between these two groups. The most 
characteristic words can be selected based on simple measures such as the Mahalanobis 
distance, and used for recognizing potential new members of the test group [26]. Similar 
algorithms are often used in gene prediction systems [27]. 

Distributions are less frequently used for representing sequences, even though 
methods of comparing sequence profiles such as hydrophobicity plots, secondary structure 
propensity plots were developed already in the 1980-es. Fourier transforms of 
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hydrophobicity plots have been used to recognize amphipathic helices as well as to build 
classifiers to various protein groups. A review on these applications is in [28]. 
 
 
2. Comparison of 3D structures 
 
Comparison of 3D structure is used in a variety of fields such as fold recognition, structural 
evolution studies and drug design, and the protocols are as diverse as the fields themselves. 
E.g. in the comparison of 3D structures produced on the same protein molecule by NMR 
methods, all the equivalent atom-pairs are a priori known and can be used in the 
comparison. In contrast, determination of folds is based on the backbone C?  atoms only 
and the equivalences have to be determined by the calculation itself. In this section we will 
briefly summarize the similarity/distance functions used for backbone comparison, 
concentrating on the similarity/distance measures used rather than the goal and/or 
implementation of the actual algorithms. In the majority of the cases, the approach used for 
structural alignments is quite similar to that used in sequence analysis (finding alignment 
paths in a distance matrix or optimizing the range by successive omission or additions). 
This is because 3D structures can be compared in terms of their (overlapping) peptide 
fragments, and a series of peptide fragments is a linear, sequence- like representation. For 
example, one can compute an rmsd between the peptide fragments of two proteins and 
construct a distance-matrix with the resulting values [29,30]. But there are many ways to 
represent peptide fragments as vectors, and then one can use any of the vector-distance 
formulas to produce the values of the distance matrix. For example, vectors of torsional 
angles [31,32], curvature and torsion parameters of peptide fragments [33,34] have been 
used by early comparison methods, as reviewed by Orengo [35].  More recent methods 
include structural alphabets described in terms of dihedral angles [36,37] or on distance 
geometry [38,39]. In the latter method, the size of the alphabet (the minimum number of 
fragments necessary to describe the observed data) is 27 derived from statistical 
optimisation. The similarity search is then carried out by Smith-Waterman alignment. 

The similarity measures described in this section can be classified according to the 
use of atomic (residue-based) descriptions, or higher-order descriptions such as secondary 
structure elements. Another important difference is that some of the methods can be used to 
produce structural alignments while others are only preliminary filters indicating similarity 
without providing a structural alignment. 

Methods based on superposition of atoms use the rmsd distance (section x, above) 
Even though the results of atom superposition methods are generally considered superior to 
most computational alternatives, and very low rmsd values are indicative of identical 
structures – rmsd can be used only with caution as a quantitative indicator of similarity. In 
addition, there is no accepted and reliable statistical model that would allow to use rmsd as 
a probabilistic score with a statistical significance, moreover rmsd does not penalize gaps. 
Therefore there a number of alternative similarity scores have been developed for obtaining 
optimal structural alignments even though the final results are always characterized in 
terms of the rmsd score. 

One group of similarity scores is based on vectors or sets of vectors assigned to 
each position within a protein structure. The parameters of the vector represent various 
features. Methods developed by Taylor and Orengo [40,41] assigned a set of intramolecular 
C? ?C?  vectors to each residue position, or used various geometric features as parameters of 
the vector assigned to each residue position. As a result, a protein structure was converted 
into a series of residue vectors, and two structures could be compared to give a so-called 
residue matrix in which the elements are calculated as a vectorial difference (city-block 
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distance of vectors, equation [2]). The optimal structural alignment can be determined by a 
dynamic programming algorithm. 

A roughly similar approach was used by Holm and Sander for the very popular 
DALI server [42]. In the underlying method the C?  atoms are characterized by vectors the 
parameters of which are the elements of distance matrix. The local vectors are then 
compared in terms of residue similarity scores such as 

 
[4] 
 
or 
 
[5] 
 
 

The subscript A,B refer to residues in structure dij are the elements of the 
hexapeptide distance matrices i.e. elements of the residue vectors. *

ijd  denotes the average 

of A
ijd  and B

ijd , R? , E?  and ?  are constant. A and B, respectively. Superscript R denotes 
rigid comparison [eqn. 4], E refers to an elastic comparison dampened by a negative 
exponential term [eqn.5]. As can be seen, summing the residues similarity measures R?  or 

E? results in quantities related to the city block distance. Comparison of two proteins A and 
B is then carried out using a distance matrix whose elements are equal to either ),( jiR?  or 

),( jiE? , where i and j refer to two pairs of structurally aligned residues: i(A), i(B), j(A), 
and j(B).  The optimization task is to find the best set of equivalences between A and B that 
maximize this function and the structural alignment is obtained by an optimization 
algorithm (Monte Carlo optimization) To improve convergence, various heuristics are used 
to obtain a reasonable starting point. 

The residue similarity score of Levitt and Gerstein [43] has the formula 
 

[6] 
 
where dij is the distance between C?  atoms of the two structures compared, M and d0 are 
constants. Sij values are elements of a similarity matrix from which an optimizeable 
substructure similarity measure Sstr can be calculated by introducing gaps. The Sstr score is 
defined as 
 
[7] 
 

The structural alignment is carried out with a dynamic programming method such as 
the Smith-Waterman algorithm. Levitt and Gerstein found that random structural 
similarities determined by this method follow the same extreme value distribution as 
BLAST scores (or Smith-Waterman sequence alignment scores), so the results can be 
characterized in terms of P values [43]. 

As superposition methods are compute intensive, a number of simplified 
representations have been developed. One general strategy is to represent the protein by a 
set of secondary structure elements (SSEs), characterized by their position within the 
polypeptide sequence and the position in 3D space and are usually represented as vectors fit 
to the C?  atoms. This is another kind of entity-relationship description in which SSEs are 
the nodes and a variety of parameters (such as distances, angles ec) are used to describe 
relationships. The rationale is that superposition of a few SSEs is less compute intensive 
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than superposing a large number of C?  atoms, so one can use algorithms that could not cope 
with large atomic detail structures. In addition, SSEs incorporate added knowledge on 
molecular geometry. The success of the process depends on i) how secondary structures are 
assigned; ii) how the similarity between two secondary structural elements of two proteins 
is estimated; iii) how the overall similarity between the two proteins is defined. 

Although the SSEs (at least the most common like helices and strands) are clearly 
defined, different assignment result from different assignment algorithms [44-46]. 
Consequently, different representations of the protein structures may arise. A further 
problem is which SSE types are considered. Very often a two-states classification is used: 
helix, including 3/10 and pi, and stand. There are nevertheless exceptions. Orengo et al. 
[44-46], for example, adopt a three-states classification: alpha-helix, 3/10-helix, and strand. 

The similarity between secondary structural elements in two proteins is usually 
estimated by comparing each pair of SSEs of one protein with each pair of the other. The 
3D arrangement of a two secondary structural elements in a protein is usually defined by 
their distance, their plane angle, and their torsion. A similarity score can then be computed 
for each pair of two secondary structural elements. The resulting matrix of similarity scores 
can then be scrutinized with dynamic programming techniques [41,47-49], treated as a 
maximum clique problem [50], with pseudo-distance matrices [51], or with cluster analysis 
[52]. The alignment of the secondary structural elements is eventually followed by a 
superposition of the C?  atoms with an initial structural alignment that depends on the 
secondary structure alignment. The overall similarity between the two structures can be 
then estimated on the basis of the rmsd values [50] of with more sophisticated figures of 
merit that considers also the quality of the secondary structure fit. 

The fragment-pair approach is also amenable to probabilistic interpretation. The 
VAST program of Bryant and coworkers [53,54] provides BLAST-like P significance 
values. VAST’s elementary unit of comparison is a simplified rmsd score resulting from a 
superposition of the endpoints of SSE pairs “trimmed” to the same length. First rmsd values 
are converted into log-odds scores using precomputed values of comparison of SSE pairs 
from related and unrelated structures, then a combined score So is calculated from the i best 
SSE pairs found to mattch between the query and a database entry. The principle of 
converting So into a P value is similar to that used by BLAST, given in equations. 15-17, 
but relies on tabulated statistics, rather then on analytical formulae. Let the probability of 
finding a substructure of size i with a score Si??So be denoted as P(Si?So). In VAST, the 
value of P(Si?So) is estimated as a function of i and Si, using tabulated values resulting from 
random comparisons. The expected number E of finding at least one score Si??So by chance 
will also depend on the size of the search space which can be defined as the total number of 
possible common substructures of i SSEs between the two proteins, a number denoted by 
Ni. The equation computed by VAST is then 

 
[8] 
 

The sum is calculated for all i values using the tabulated P(Si?So values. Same as 
with BLAST, if E is small (e.g. E<0.01) it is also a P value. The method is very fast, due to 
the precomputed statistics, and accessible at the NCBI web site. 

A variety of other procedures that represent the protein 3-D structure as an ensemble 
of secondary structural elements have also been proposed. In Martin's approach [55], 
secondary structural elements are given one of the letters of an alphabet that identify the 
secondary structure type, direction, length, and solvent accessibility. Two proteins can be 
thus compared with the simple Needlemann-Wunsch algorithm. Murthy [56] used dynamic 
programming techniques to optimally superpose secondary structural elements. 
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Mitchel [57] developed a graph- like representation, using secondary structural 
elements as nodes, and angles and distances as edges, the largest common substructure was 
then identified by subgraph isomorphism algorithm developed by Grindley et al. [58]. 
Harrison and associates [59] further developed this approach and introduced a similarity 
measure Sgrath based on the number of SSEs and residues in two proteins and in the largest 
common subgraph: 
 
[9] 
 
 
where the two proteins compared have SS1 and SS2 secondary structures and R1 and R2 
amino acid residues, respectively, their comparison generates a largest clique of size CS. 
The largest clique is produced from a set of secondary structures that contain a total of CR1  
and CR2 residues in protein 1 and protein 2, respectively. This similarity measure is 
reported to be independent of fold size and was used to characterize the fold space 
represented by the CATH database [59]. 

Finally, there are methods that do not use superposition but define simple similarity 
scores instead. PRIDE [60] is based on the distribution of intramolecular C? -C?  distances 
incorporated into a set of histograms for C?  pairs separated by 3 to 30 residues. The 
comparison between two proteins is thus reduced to the comparison of 28 distribution pairs, 
which can be carried out by a standard statistical method of contingency table analysis and 
yields a probability value. The average value of these 28 single similarity scores was 
defined as the Probability of identity or PRIDE score [60]. Pride has a value between 0 and 
1, and has metric properties which makes it suitable for clustering large datasets. The 
calculation is extremely fast (perhaps the fastest available today), database search and fold 
assignment, clustering of structures are possible on line. When used as a simple nearest 
neighbor classifier, PRIDE reaches 99.5% success in fold recognition, based on the C,A,T, 
H classes of the CATH database. This method is available via a web server at ICGEB. 

Another recent, fast comparison method by [61] uses a vector representation of 
protein folds which is based on topological invariants called Gauss integrals, each 
representing a topological property of the backbone space curve [62]. 30 such integrals are 
calculated for two proteins, which are then compared in terms of a 30 dimensional 
Euclidean distance. A classifier built on Gauss integrals has a reported accuracy of 96.8% 
on the C,A,T classes of the CATH database [61]. 
 
 
3. Genomes, proteomes, networks 
 
Designing representations for genomes, proteomes and networks is a real challenge and we 
are only at the first steps of this new era. The representations in current use follow the 
entity-relationship tradition, for example genomes are represented as linear array of genes 
and other DNA segments. The entities – genes – are predicted with gene-prediction 
programs or are determined experimental methods, and this adds a new layer of knowledge 
to the molecular data. The relationships are manifold but are predominantly binary in 
nature. Examples of relations include physical vicinity, distance along the chromosome, 
regulatory links extracted from DNA chip data and so on. The resulting picture is a graph of 
several ten-thousand nodes and relatively few edges per node denoting various 
relationships. The description of proteomes is only somewhat different. The proteins are 
described in functional, biochemical and structural terms, and the relationships between 
proteins include metabolic relationships (sharing substrates in metabolic pathways) as well 
as structural relationships (sequence and structural similarities). Even this sketchy 
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introduction implies that we deal with new a kind of complexity that originates, from the 
numerous and to a large extent, unknown interactions between the molecules. On the other 
hand, the study of large networks – such as Internet, social- road- and electric networks, etc. 
– has provided interesting insights that have been successfully applied to genomes, 
proteomes and bibliographic networks. 

From the computational point of view, genomes and proteomes are described as 
very large graphs in which the nodes (genes, proteins) and the edges (relations) are 
unknown or unsure. These large and fuzzy descriptions are in sharp contrast with the 
descriptions developed for well-defined molecular structures, but the methods are not 
dissimilar to those used in other fields. Given the large and different genome sizes as well 
as the uncertainties of the data, structured descriptions are not very useful for comparison. 
Simple, unstructured representations like sets or vectors that can be easily compared in 
terms of their known components are widely used. The approaches differ how the 
components are selected and compared. (It is noted that this section concentrates only on 
those genome-comparison studies that use genome-level descriptions. For phylogenetic 
approaches to genome comparison see [63,64]. 

One group of approaches use predefined components, given in the form of a 
classification. Proteins can be classified into several thousand orthologous groups (COGs) 
and a genome (proteome) can be described by as a vector with a corresponding number of 
components, each component denoting the presence or absence of a given protein group 
[63]. This is an extremely simplified unstructured description, but the selected components 
of the vector adequately describe the entire universe of protein functions as we know it 
today. Two such vectors can then be compared using the Jaccard coefficient, and a related 
distance measure (1 minus the coefficient) can be used as a metric for classifying the 
genomes. This is a fast procedure that has no adjustable parameters, nevertheless it gave 
results in good agreement with other, more subjective methods. In a similar way, proteins 
can be grouped according to their similarity to sequences representing known 3D folds. In a 
similar manner, the genomes can be classified in terms of the 3D folds[65,66]. 

Metabolic data are a further example of predefined component classification that 
can be used for genome comparison [67,68]. A proteome can be described in terms of the 
constituting enzymes, substrates, intermediate complexes such as given in the WIT 
database [69]. Organism data can then be converted into vectors representing enzymes or 
substrates in pathways or pathway-groups. For example, in a vector representing the 
metabolic pathways of E. coli in terms of enzymes, a parameter ei is an integer denoting the 
number of times enzyme i occurs in the metabolic pathways of the organism. Such vectors 
can then be compared using any of the vector similarity/distance measures described above. 
A classification of genomes based on vectors representing the metabolic and information-
processing pathways in terms of enzymes and substrates has shown that the sys tem-level 
organization of Archea and Eukarya are similar [70]. This comparison was based partly on 
presence/absence data and the Jaccard coefficient, and partly on comparing the ranking data 
of component frequencies. 

Another group of representations uses sequence comparison to dynamically define 
matching components between two genomes. The matching pairs of genes can be selected 
based on BLAST scores [71], Smith-Waterman scores [72,73]. The intergenomic distances 
can then be based on the list of shared (as well as total) components present in two 
genomes, using e.g. the Jaccard coefficient. A particularly interesting version of this 
method uses vicinal gene-pairs with conserved direction of transcription, identified from 
Smith-Waterman searches [74-76]. Given the matching vicinal pairs in the two genomes as 
substructures, one can proceed in the usual way. This method thus preserves the speed of 
the comparison but uses substructures that are richer in detail i.e. capture a part of the gene 
order. 
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Unfortunately, the gene-based substructures cannot be increased without practical 
limits: at present, quantitative genome comparisons are seemingly limited to gene (protein) 
pairs. On the other hand, higher-order patterns can be very informative in the qualitative 
sense. Studies on conserved local gene-order revealed that in addition to the known 
operons, there are larger units – über-operons or super-operons – that are conserved in 
terms of functional and regulatory context [77,78]. This takes us to a familiar world of 
known patterns: operons and metabolic pathways are both higher order patterns (directed 
graphs) defined in terms of entities and relationships. Comparison of related metabolic 
pathways is a subgraph isomorphism problem [79], and related techniques underlie the 
Kyoto encyclopedia of genes and genomes [80]. 

The study of technological networks such as the Internet, has provided important 
insights into genetic and metabolic networks. The methods of comparison are qualitative, 
rather than quantitative. The currently known network types (scale-free, small-world, 
modular and random networks) all have been observed in various biological systems [81]. 
Identification of network type is based on graph-measures, such as clustering coefficients, 
betweenness centrality, etc. [82,83]. In principle, any numeric measure that can be “locally” 
computed for vertices or edges of a graph, can be used to draw a distribution. In fact, the 
main network types are currently qualitatively defined by these distributions. For instance, 
the number of connections (i.e. the degree) in scale-free networks that are characteristic of 
many biological systems can be described by a power- law type degree distribution [84]. 
They can be further subdivided into groups based on the distribution of betweenness-
centrality [85], or of the local clustering coefficient[85]. Network patterns defined as small 
directed subgraphs are also used to characterize network classes, statistical studies revealed 
similar network patterns shared by genetic and electronic networks [86-88]. 
 
 
4. Conclusions  
 
The framework of entity-relationship networks provides a simple method to describe 
similarity groups (equivalence classes), patterns, similarity measures that are used in the 
comparison of sequences as well as protein 3D structures. The strength of this analysis is 
shown by the fact that it can be extended to the analysis of large and fuzzy structures, such 
as genomes and networks. 
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