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1Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University of Szeged,
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ABSTRACT

Motivation: Distance measures built on the notion of text compression

have been used for the comparison and classification of entire genomes

andmitochondrial genomes.Thepresentstudywasundertaken inorder

to explore their utility in the classification of protein sequences.

Results: We constructed compression-based distance measures

(CBMs) using the Lempel-Zlv and the PPMZ compression algorithms

and compared their performance with that of the Smith–Waterman

algorithm and BLAST, using nearest neighbour or support vector

machine classification schemes. The datasets included a subset of

the SCOP protein structure database to test distant protein similarit-

ies, a 3-phosphoglycerate-kinase sequences selected from archaean,

bacterial and eukaryotic species as well as low and high-complexity

sequence segments of the human proteome, CBMs values show a

dependence on the length and the complexity of the sequences com-

pared. In classification tasks CBMs performed especially well on dis-

tantly related proteins where the performance of a combined measure,

constructed from a CBM and a BLAST score, approached or even

slightlyexceeded that of theSmith–Watermanalgorithmand two hidden

Markov model-based algorithms.
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1 INTRODUCTION

The alignment-based comparison of biological sequences plays a

fundamental role in most areas of computational genomics. While

exhaustive algorithms (Needleman and Wunsch, 1970; Smith and

Waterman, 1981) are computationally expensive for big applica-

tions, fast heuristic algorithms such as BLAST (Altschul et al.,
1990) are among the most extensively used tools in biological

computing.

Alignment-free methods of sequence comparison are apparently

less popular but are, in fact, quite widely used as pre-selection filters

in large-scale sequence processing (Vinga and Almeida, 2003;

Vinga et al., 2004). In early applications of alignment-free com-

parisons, sequences were represented in terms of the frequencies of

fixed length segments (sequence words, oligones). While very fast

when compared with sequence alignment, this approach is com-

plicated by the fact that the word-length and the size of the

sequence-alphabet have a critical influence on the sensitivity. A

new generation of alignment-free methods is based on a notion

borrowed from information theory, the so-called Kolmogorov com-

plexity. Conditional Kolmogorov complexity K(X|Y) is defined as

the length of the shortest program computing X on input Y (Li and

Vitányi, 1997). The Kolmogorov complexity K(X) of a sequence

X is a shorthand notation for K(X|l), where l is the empty string.

The corresponding distance function, (d1 and d2), use the relative

decrease in complexity or conditional complexity as a measure of

sequence similarity (Li et al., 2001):

d1ðX‚YÞ ¼ 1 � KðYÞ � KðYjXÞ
KðXYÞ ‚ ð1Þ

where XY denotes the concatenated X and Y strings. An alternative

definition is

d2ðX‚YÞ ¼ maxfKðXjYÞ‚ KðYjXÞg
maxfKðXÞ‚ KðYÞg : ð2Þ

The distance functions defined above are not metrics, but they

satisfy the weak triangle inequality [i.e. d(X, Y) � d(X, Z) + d(Z, Y)

is fulfilled up to an additive error term] (Li et al., 2001, 2004).

Kolmogorov complexity is a non-computable notion, and in prac-

tical applications it is approximated by the length of the compressed

sequence calculated by a compression algorithm like LZW (Lempel

and Ziv, 1976) or PPMZ (Bloom, 1998, http://www.cbloom.com/

papers/ppmz.zip). The calculation does not require re-solving the

sequence with fixed word length segments. Practically speaking,

compression-based similarity/distance measures (CBMs) discover a

slice of all (subword) similarities which slice is determined by the

compressor used (Cilibrasi and Vitányi, 2005).

In the area of biological seqeunce comparison, CBMs were used

primarily in the comparison of DNA sequences, including mito-

chondrial and full genomes (Cilibrasi and Vitányi, 2005; Li et al.,
2001, 2004; Otu and Sayood, 2003). It has been suggested that

CBMs—like other alignment-free measures—might be useful as

pre-selection filters for alignment-based querying in large-scale

applications (Li et al., 2001; Vinga and Almeida, 2003). It

was also shown that compression methods can be used to speedup
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probabilistic profile matching (Freschi and Bogliolo, 2005). A

method for the complexity-based comparison of protein structures

is described in Krasnogor and Pelta (2004).

The goal of the present study was to explore the properties of

CBMs in classifying protein sequences, using support vector

machines (SVM) and nearest neighbour (1NN) classification

schemes. We found that their performance—especially on shorter

sequences such as protein domains—falls short of alignment-based

methods, but a combination of the BLAST score and a CBM can

approach, even exceed the performance of the Smith–Waterman

algorithm.

2 ALGORITHMS AND DATASETS

2.1 Sequence comparison methods

The formula for calculating compression-based similarity measures

using the length values of compressed strings was derived from

Equation (2) (Cilibrasi and Vitányi, 2005) as

CBMðX‚YÞ ¼ CðXYÞ � minfCðXÞ‚CðYÞg
maxfCðXÞ‚CðYÞg ‚ ð3Þ

where C(.) denotes the length of a compressed string, compressed by

a particular compressor C, such as the LZW or the PPMZ algorithm.

In this study the LZW algorithm was implemented in MATLAB

while the PPMZ2 algorithm was downloaded from Charles Bloom’s

homepage (http://www.cbloom.com/src/ppmz.html).

Alignment-based sequence comparisons were made using version

2.2.4 of the BLAST program (Altschul et al., 1990) with a cutoff

score of 25 and with the Smith–Waterman algorithm as implemen-

ted in MATLAB (MathWorks, 2004). The BLOSUM 62 matrix

(Henikoff et al., 1999) was used in each case. The Smith–

Waterman comparison data on Dataset I (below) were taken

from Liao and Noble (Liao and Noble, 2003).

2.2 Classifier algorithms

1NN classification (Duda et al., 2001) is a simple technique

whereby a sequence is assigned to the a priori known class of

the database entry that was found most similar to it in terms of a

distance/similarity measure like an alignment-based or compression-

based measure.

SVMs are now widely used in the classification of protein

sequences (Noble, 2004; Yang, 2004). In most of the early applica-

tions, the sequences to be classified were represented in an inter-

mediate between the vector pairs, and a distance calculated from the

vectors was used to train the classifiers. Another class of methods

uses sequence alignment scores for the training of the classifiers

(Liao and Noble, 2003; Vlahovicek et al., 2005). We chose one of

the latter methods, the so-called pairwise SVM approach (Liao and

Noble, 2003), where a sequence X is represented by a feature vector

FX ¼ fx1, fx2, . . . , fxn, n is the total number of proteins in the training

set and fxi is a similarity/distance score, such as the BLAST score,

the Smith–Waterman score or a CBM between sequence X and the

i-th sequence in the training set. For the SVM experiments we used

the SVMlight software package (Joachims, 1999). The tests were

done using the procedure published by Liao and Noble (2003).

2.3 Datasets

Dataset I. The evaluation of classification performance was tested

on a sequence dataset designed to test distant protein similarities

(Liao and Noble, 2003). This set consists of 4352 protein domain

sequences (whose lengths range from 20 to 994 amino acids) selec-

ted from the SCOP database (Andreeva et al., 2004). The sequences

of this dataset belonging to 54 superfamilies were divided into

positive and negative examples, training and test sets in such a

way that the test set consisted of members of a protein family

that was not represented in the training set, i.e. there is a low degree

of sequence similarity and no guaranteed evolutionary relationship

between the two sets. The evaluation was carried out by standard

ROC (receiver operator curve) analysis (Gribskov and Robinson,

1996) like that described in (Liao and Noble, 2003).

Dataset II. A total of 131 sequences of the essentially ubiquitous

glycolytic enzyme, 3-phosphoglycerate kinase (3PGK, 358–505

residues in length)—obtained from 15 archaean, 83 bacterial and

33 eukaryotic species—was used as an example of evolutionarily

related sequences (Pollack et al., 2005). Since a distance matrix of

sequence comparison measure is not useful for seeing how well the

sequence groups are separated, for better visualization it is neces-

sary to map the sequences onto a 2D plane while preserving as

possible the distance metric relations. Methods such as multidimen-

sional scaling and locally linear embedding (LLE) are suitable for

this task (Roweis and Sul, 2000). After the LLE transformation of

datasets, the efficiency of the classification was evaluated by sep-

arating those sequences belonging to the three taxonomic groups

using a multidimensional counterpart of the Fisher separation ratio

(Fukunaga, 1990). This ratio is defined as follows:

J ¼ jSBj
jSwj

‚ ð4Þ

where SB and SW are between- and within-class scatter matrices and

|.| denotes matrix determinant. Here the between-class scatter matrix

shows the scatter of the class mean vectors around the overall mean

vector, while the within-class scatter matrix represents the weighted

average scatter of the covariance matrices of the sample vectors

belonging to each class.

Dataset III. This dataset consists of artificial sequences

designed to study the behaviour of CBMs. The effect of domain

deletions/insertions and rearrangements was studied on the

Complement C1s subcomponent precursor (Swiss-Prot ID:

C1S_HUMAN, AC: P09871), a multidomain protein of 688

residues consisting of a signal peptide (A), two CUB domains

(B, B0), an EGF domain (C), two SUSHI domains (D, D0) and a

trypsin-like catalytic domain (E) that is post-translationally cleaved

from the precursor. The domain architecture of the native protein

can be written as ABCB0DD0E, and a hypothetical circular per-

mutant can be written as DD0EABCB0. A series of truncated and

rearranged sequences were produced (Table 3) and compared with

the native sequence.

Finally, each of the 4352 sequences in Dataset I were random-

shuffled using the shuffleseq program of the EMBOSS package

(Rice et al., 2000) and compared with its original courterpart

(4352 pairwise comparisons) using CBMs or the BLAST score.

Dataset IV. A dataset of high and low complexity sequences

was produced by taking human proteins from the KOG database

(Koonin et al., 2004), processing them with the SEG program of

J. Wootton (Wootton, 1994), using the parameter values of window

length ¼ 45, trigger complexity ¼ 3.25 and extension complexity ¼
3.55, as recommended by the author. The segments with length in

the range of 20–1000 amino acids were chosen for further analysis.
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From a total of 163 473 high-complexity and 53 849 low-

complexity regions, we randomly selected 8859 and 3772

sequences, respectively, for an analysis whose results are shown

in Figure 5.

3 RESULTS

Synthetic classification experiments. From the large number of

machine learning algorithms available today we chose two for test-

ing the classification efficiency of the compression-based distance

measures. The first is (1NN) classification, which is often used as a

reference classifier in comparative studies, while the second method

is that of SVM (Cristianini and Shawe-Taylor, 2000). From the

latter we chose the ‘pairwise SVM’ architecture so that our com-

parisons could be directly compared with published data (Liao and

Noble, 2003).

The classification performance of the CBMs was first evaluated

on protein domain sequences taken from the SCOP database (Data-

set I). This is a carefully selected dataset designed to evaluate distant

sequence similarities. The results displayed in Figure 1 reveal that

alignment-based methods Smith–Waterman and BLAST perform

better than the compression-based methods (LZW and PPMZ) for

both the SVM classifier and the (1NN) classifier. The results

(Smith–Waterman, BLAST, LZW, PPMZ) are quantitatively com-

pared in Table 1.

The results (Smith–Waterman, BLAST, LZW, PPMZ) obtained

on the 3PGK sequences (Dataset II) are shown in Table 2 and

Figure 2. In contrast to the members of Dataset II, 3PGK proteins

are closely related to each other and fulfill the same biological

function so they are a good example of homologous proteins.

The sequences in Dataset II were carefully selected so as to provide

a wide taxonomic coverage (Pollack et al., 2005). The performance

of the Smith–Waterman algorithm is the best, but the performance

of the compression-based distances exceeds that of the BLAST

algorithm.

From these preliminary results it appears that the performance of

each CBM falls somewhat short of that of a rigorous sequence-

alignment algorithm such as the Smith–Waterman algorithm, but

can approach or even match the performance of a heuristic algo-

rithm such as BLAST.

Classification using CBMs combined with BLAST. The second

experiment was designed in order to find out whether CBMs can be

used in a mixed-feature setting. In particular we were interested

in finding out if a combination of the BLAST score and the

compression-based measures could approach the performance of
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Fig. 1. Relative classification performance of the various similarity/distance

measures in SVM (a) and Nearest Neighbour (b) classifiers as determined on

54 SCOP domain groups (Dataset I). Each graph plots the total number of

families for which the integral of the ROC curve (AUC) exceeds a score

threshold indicated on the x-axis. A higher curve corresponds to more

accurate classification performance. The data for SVM-Fisher (Jaakkola

et al., 1999), SAM profile HMM (Krogh et al., 1994) and PSI-BLAST

(Altschul et al., 1997) were taken from Liao and Noble (2003).

Table 1. Classification performancesa of various similarity/distance

measures on protein domain sequences (Dataset I)

Similarity/distance measure Classification method

SVM Nearest neighbor

Smith–Waterman P-value 48.66 50.22

BLAST Score 47.71 47.33

LZW [Equation (3)] 46.97 45.73

PPMZ [Equation (3)] 42.50 41.25

LZW-BLAST [Equation (5)] 49.00 37.18

PPMZ-BLAST [Equation (5)] 47.71 35.23

SVM-Fisherb 36.84 n.a.

SAMb 35.49 n.a.

PSI-BLASTa 31.82 n.a.

aExpressed as the integral of the AUC curve in Figure 1. As Dataset I contains 54 families,

the integral has a maximum value of 54. This value is attained if all the 54 groups are

classified without errors.
bSVM-Fisher denotes the method described in (Jaakkola et al., 1999), SAM denotes

the profile HMM classifier of Krogh’s team (Krogh et al., 1994) while PSI-BLAST

represents the algorithm proposed in (Altschul et al., 1997); The values of the latter

three were calculated from the data published in (Liao and Noble, 2003).

Table 2. Classification performance of various similarity/distance measures

on 3-phosphoglycerate kinase sequences from different taxa (Dataset II)

Measure Fisher separation ratio

Smith–Waterman P-value 1.629

BLAST Score 0.428

LZW [Equation (3)] 0.670

PPMZ [Equation (3)] 0.994

LZW-BLAST [Equation (5)] 0.751

PPMZ-BLAST [Equation (5)] 0.803

Application of compression-based distance measures
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the Smith–Waterman algorithm. Although numerous combination

schemes are available in the literature (cf. Fuzzy theory: Klir, 1997)

here the combination of distance measures was carried out using the

multiplication rule:

FðX‚YÞ ¼ ð1 � SðX‚YÞ
SðX‚XÞ ÞCBMðX‚YÞ‚ ð5Þ

where S(X, Y) is a BLAST score computed between a query X and a

subject Y, S(X, X) is the BLAST score of the query compared with

itself. The term in parenthesis is used to transform the BLAST score

into a normalized distance measure that ranges between zero and

one. Equation (5) is a straightforward method for combining CBMs

with more specialized methods (in this paper normalized alignment

score). The rationale is that an application specific bias may

improve the performance of the applied independent compression

method. The performance of this combined measure (LZW-

BLAST, PPMZ-BLAST) was in fact close to and, in some cases,

even slightly superior to that of the Smith–Waterman algorithm,

both on protein domains (Fig. 3) and on the 3PGK sequences

(Table 2). We consider this result encouraging since Equation

(5) does not contain any optimized parameter.

In Figure 1 we also plotted the performance of two methods based

on hidden markov models (HMMs). HMMs are currently the most

popular tools for detecting remote protein homologies (Durbin et al.,
1999). The SAM algorithm (Krogh et al., 1994) is a profile-based

HMM, while the SVM-Fisher method (Jaakkola et al, 1999, 2000)

couples an iterative HMM training scheme with an SVM-based

classification and is reportedly one of the most accurate methods

for detecting remote protein homologies. The performance data of

these methods were calculated on Dataset I and are taken from Liao

and Noble (2003). Here the performance of both the HMM-based

methods seems to fall short of the best-performing CBMs. In quant-

itative terms the AUC integral value of the SAM algorithm is 35.49,

that of SVM-Fisher is 36.84, while the CBMs have AUC integral

values >42 (Table 1). Even though the results may depend on the

database used and should be confirmed by a more extensive stat-

istical analysis, we find it encouraging that the combination of two,

low time-complexity measures—CBM and a BLAST score—can

compete with HMMs in terms of classification accuracy.

Experiments on rearranged and randomized sequences. Protein

evolution often includes rearrangements such as the gain or loss of

domains and circular permutations. Then the question arises of

whether or not CBMs can detect the differences between the pro-

ducts. The results in Table 3 show that a reshuffling of the domains

does not substantially affect CBMs. For example, comparing the

C1S precursor, a multidomain protein of 688 amino acids with its

reshuffled counterparts in which the domain-order is reversed, gives

a PPMZ distance of 0.067 while the C1S compared with itself gives

a value of 0.020 (The respective BLAST score values are 1435 and

3789, i.e. there is a substantial difference). Also, circular permuta-

tion of a long sequence has a smaller effect on the compression dis-

tance than on the BLAST score. This property of CBM may be

useful when similarities between rearranged sequences are to be

detected.

Sequence length and sequence complexity. It is generally known

that short sequence similarities are more difficult to detect than long

Smith-Watermann BLAST

PPMZ LZW

LZW-BLASTPPMZ-BLAST

Fig. 2. Separation of Eukaryotic (diamond), bacterial (dot) and archæan

(cross) 3-phosphoglycerate kinase sequences (Dataset II). The pairwise

similarity/distance values were subjected to LLE.
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Fig. 3. The relative performance of the mixed distance measures for the 54

SCOP superfaimilies in Dataset I (see the legend of Fig. 1 for explanations).
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ones. This tendency also seems to be valid for the two CBMs

analysed here. For example, if we plot the classification perform-

ance measure AUC for the 54 SCOP superfamilies as a function of

the average sequence length, the low values are predominantly

found in the shorter superfamilies (Fig. 4). This tendency is

quite similar for the Smith–Waterman algorithm, CBMs and the

BLAST algorithm (www.inf.u-szeged.hu/~kocsor/CBM05).

In order to find out whether there are systematic tendencies in the

length dependence, we plotted the values of the self-similarities as a

function of the sequence length using the 4352 SCOP sequences

(Fig. 5). In principle, this value should be close to zero. In practice

we found non-zero values that gradually decreased as a function of

the sequence length. Furthermore, we compared each sequence with

its random shuffled counterpart and plotted the resulting CBM value

as a function of the sequence length. These values were expected to

be close to one. In practice this was found only in the case of longer

sequences, the shorter ones giving values well below one. It is worth

noting that these tendencies are quite clear, for both cases as shown

by the log–log plots.

The two panels on the right of Figure 5 show the results obtained

on low and high complexity segments of human proteins. Low-

complexity segments correspond to non-globular regions in proteins

characterized by a biased amino acid composition and/or a repet-

itive amino acid sequence. Such regions are well-known to obscure

the detection of biologically important similarities (Wootton, 1994).

We had two particular reasons for testing CBMs on low-complexity

regions: (1) repetitive character-sequences can be, by definition,

better compressed than the average and (2) our datasets of natural

sequences (Datasets I and II) are composed of proteins that are

predominantly globular so they are expected to contain few low-

complexity regions. Contrary to our expectations, we found that the

distributions of CBM values on low and high complexity proteins

were not markedly different (Fig. 5B and D).
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protein domains of Dataset I (A), and high (black) and low-complexity (grey)

segments of human proteins (B). The distance of a sequence versus itself is

supposed to give a value of 0.00. The actual values display a length depen-

dence shown in panels A and B (log–log plot). A comparison of native

sequences with their random shuffled counterparts in Dataset I (B) and high

(black) and low-complexity (grey) segments of human proteins (D). The

PPMZ distance of a sequence from its random-shuffled conterparts is sup-

posed to give a high value, a value close to 1.00. The length dependence of the

actual value (i.e. its difference from 1.00) is shown in the lower panel (log–log

plot) (see also http://www.inf.u-szeged.hu/~kocsor/CBM05).
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Table 3. Effect of sequence rearrangements on the various similarity/distance measures

Comparison of human C1S precursora BLAST LZW PPMZ LZW-BLAST PPMZ-BLAST

(domain structure: ABCB0DD0E) with Score %b Score % Score % Score % Score %

ABCB0DD0E (itself) 3789 0 0.646 0 0.02 0 0.000 0 0.000 0

ABCCB0DD0E (duplication of domain C) 3085 18.8 0.657 8.0 0.031 1.2 0.122 15.9 0.005 0.5

ABB0DD0E (deletion of domain C) 2815 26.0 0.657 8.2 0.092 7.6 0.169 22.0 0.023 2.5

ABDD0E (deletion of domains C, B0) 2289 40.0 0.689 32.7 0.251 24.5 0.273 35.5 0.099 10.4

D0E ABCB0D (circular permutation) 2440 36.0 0.648 1.6 0.034 1.5 0.231 30.1 0.013 1.4

E D0D B0CBA (reverse domain order) 1435 62.8 0.657 8.2 0.067 5.0 0.408 53.2 0.045 4.7

2 · ABCCB0DD0E (duplication) 3789 0.0 0.743 74.4 0.019 0.1 0.000 0.0 0.000 0.0

Random shuffled
c

human C1S precursor 42.3 100.0 0.776 100.0 0.961 100.0 0.768 100.0 0.951 100.0

aSwiss-Prot AC¼P09871, A¼Signal peptide (res.1–15) B, B0 ¼CUB domains (res. 16–130, 175–290, respectively), C¼EGF domain (res. 131–172), D, D0 ¼Sushi domains (res. 292–

356, 357–423, respectively), E ¼ Peptidase SI (res. 438–688)
bScore of CIS with itself ¼ 0%, score of CIS with random shuffled CIS ¼ 100%
cScores are the average of comparing CIS to 50 random shuffled CIS sequences.

Application of compression-based distance measures

5



4 CONCLUSIONS

The original reason for this study was to gain an insight into the

behaviour of CBMs in protein classification tasks. We found that a

combination of two, low time-complexity measures (BLAST score

and CBMs) can approach or even exceed the classification perform-

ance of such computationally intensive methods as the Smith–

Waterman algorithm or HMM methods. Summarizing we conclude

that CBMs may be a useful auxiliary tool for increasing the clas-

sification performance of heuristic protein sequence alignment. It is

apparent on the other hand, that short sequence similarities are not

efficiently detected by CBMs and future work is needed to clarify if

this property can be corrected. Nevertheless we feel that, in some

applications such as the comparison of full-length proteins CBMs

may offer a cost-effective alternative to probabilistic modeling

methods such as HMMs.
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