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László Kaján1,†, Attila Kertész-Farkas2, Dino Franklin1, Neli Ivanova1, András Kocsor2

and Sándor Pongor1,3,�
1Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Padriciano 99,
I-34012 Trieste, Italy, 2Research Group on Artificial Intelligence of the Hungarian Academy of
Sciences and University of Szeged, Aradi vértanúk tere 1., H-6720 Szeged, Hungary and
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ABSTRACT

Motivation: Likelihood ratio approximants (LRA) have been widely

used for model comparison in statistics. The present study was under-

taken in order to explore their utility as a scoring (ranking) function in

the classification of protein sequences.

Results: We used a simple LRA-based on the maximal similarity

(or minimal distance) scores of the two top ranking sequence classes.

The scoring methods (Smith–Waterman, BLAST, local alignment

kernel and compression based distances) were compared on

datasets designed to test sequence similarities between proteins

distantly related in terms of structure or evolution. It was found that

LRA-based scoring can significantly outperform simple scoring

methods.

Contact: pongor@icgeb.org.

Supplementary information: http://www.inf.u-szeged.hu/�kfa/

lra06/.

1 INTRODUCTION

Classification of protein sequences is a crucial task in computational

genomics. If a newly determined sequence has a close relative in

one of the known protein families, classification can be simply

carried out using methods of sequence similarity searching, such

as BLAST (Altschul et al., 1990). Discovery of distant sequence

similarities, such as the assignment of a new subgroup of sequences

to a known class, usually requires more sophisticated and more

computationally intensive methods, like profiles or HMM classifiers

(Krogh et al., 1994). The goal of the present work is to test the utility
of likelihood ratio (LR) as a scoring function in protein classifica-

tion based on similarity searching using an a priori classified

sequence database.

The LR is a familiar concept in statistics for testing the differ-

ences between competing models (Hoel, 1962). It is well-known

that the Bayes decision rule for binary classification can be refor-

mulated as a log-LR test with a decision threshold (Duda et al.,
2001). In the framework of protein classification LR can be defined

as follows:

LRðxÞ ¼ Pðx j þ Þ
Pðx j � Þ ‚ ð1Þ

where x is the query protein, the ‘+’ symbol represents a particular

protein class, ‘�’ denotes the complementer class, while P(x j +) and
P(x j �) stand for class-conditional probability density functions.

Now assuming a preset threshold t, the following decision rule

(i.e. a log-LR test) can be applied:�
if log LRðxÞ > t select class ‘þ ’‚

otherwise select class ‘ � ’:
ð2Þ

In practice, the tuning of threshold t is often based on a priori

information and/or heuristic algorithms. The optimality for the

above test follows from the Neyman–Pearson lemma, which guar-

antees that in simple point hypothesis testing, an LR based test has

the most power among all tests of a given size (Hoel, 1962). A

variant of this test, with a fixed t threshold was used in protein

structure classification by Røgen and Fain, (2003).

When a query protein sequence is compared to an a priori

classified database, the top list of similarities usually contains rep-

resentatives of several classes, so we have a multiclass problem

instead of a two-class problem. The difficulty comes from the fact

that the classes are not very well characterized and often very

different in terms of size (number of members), sequence length

as well as the level of within-group similarities. This situation is not

uncommon in machine learning, and the present work was inspired

by a simple likelihood ratio approximant (LRA) developed for

computer vision applications (Claus and Fitzgibbon, 2004):

LRAðxÞ �
�
dðx‚� Þ
dðx‚þ Þ

�
‚ ð3Þ

where d is the minimal distance of the query object x taken from the

highest ranking members of the first ‘+’ and second ‘�’ classes,

respectively. It is noted that Equation (3) implies the assumption

that the probability of an object belonging to a class is inversely

proportional to its minimal distance from the members of that class

(a formal proof is outlined in the Supplementary materials). Second,

Claus and Fitzgibbon used Equation (3) as a scoring (ranking)
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function, not as a statistical test and for this kind of application it is

not necessary to define a threshold t.

Our general goal is to develop LRAs for protein classification

and to use them as scoring functions in similarity searching. For

the comparison of two sequences most of the popular programs

(BLAST, Smith–Waterman, etc.) use similarity measures that are

maximal for identical and zero or minimal for different sequences.

The similarity measures are thus inversely related to the distance

or dissimilarity measures, that are zero for identical sequences and

very large for distantly related sequences. Taking this inverse

relationship into consideration we suggest the following formula

for an LRA scoring function:

LRAðxÞ �
�
sðx‚þ Þ
sðx‚� Þ

�
‚ ð4Þ

where s gives the similarity taken between the query sequence x and
the highest ranking members of the first ‘+’ and second ‘�’ classes,

respectively. The goal of this paper is to develop a family of LRAs

based on Equations (3 and 4) and to test them in various scenarios of

protein classification. We are particularly interested in the analysis

of distant similarities, especially in testing a classifier’s ability to

recognize a new subgroup in a given protein class. It is noted, that

Equation (4) assumes a reciprocal relationship between s and d,
which may not necessarily be the case. In this work we will use two

additional monotone decreasing functions to interconvert s and d
into each other.

The rest of the paper is structured as follows. The definitions of

the LRAs are described in section 2. Then section 3 describes the

elements of the test system, including (1) the datasets used to

represent various examples of distant protein similarities, (2) the

sequence comparison methods; (3) the classification algorithms and

(4) the performance measures used. Finally, section 4 contains the

results and the discussion.

2 DEFINITION OF LRA

If we have a sequence similarity score, such as an alignment score

computed with the BLAST, Smith–Waterman, Needleman Wunsch

algorithms, Equation (4) can be used to construct the LRA function.

If we have a sequence distance measure, such as a compression

based distance or a Euclidean distance of features, we can use

Equation (3). If the original suggestion of Claus and Fitzgibbon

is valid also in protein classification, we can expect better results

when the LRA measures computed according Equations (3 or 4) are

used instead of the original sequence similarity or dissimilarity

scores, respectively.

Let us now suppose that d and s are related to each other by some

monotone decreasing function f so that d� f(s) and s� f(d). In other
terms, we will try other functions than the simple reciprocal depen-

dence implied by Equations (3 and 4). In particular we will use

f 1ðxÞ ¼ e�bx ð5Þ

f 2ðxÞ ¼
1

logð2Þ

�
�bd þ log ð1þ ebxÞ

�
‚ ð6Þ

where x is either s or d, while b is a positive, tunable parameter. f1
and f2 map to [0,1] and the b parameter regulates the slope. The f
functions transform similarity measures to dissimilarity measures

and vice versa. In particular, if x is a similarity measure, f(x) will be
a dissimilarity measure, that can be used to compute an LRA

according to Equation (3). And vice versa, if x is a dissimilarity

measure, f(x) will be a similarity measure that can be used in

conjunction with Equation (3).

3 DATASETS AND ALGORITHMS

3.1 Datasets

Dataset A. The sequence dataset of Liao and Noble was

designed to test distant protein similarities (Liao and Noble,

2003). This set consists of 4352 protein domain sequences (lengths

ranging from 20 to 994 amino acids) selected from the SCOP

database (Andreeva et al., 2004). A total of 54 classification

tasks are defined on this dataset, each of them represented by posi-

tive and negative examples divided into training and test sets. In a

given classification experiment, the members of a superfamily are

the positive set from which the members of one particular protein

family are the test set while the rest of the superfamily is the training

set. This setup ensures that there is a little sequence similarity

and no guaranteed evolutionary relationship between the test and

the training sets. The same principle was used to construct the other

two datasets.

Dataset B. The dataset was constructed from evolutionarily

related sequences of a ubiquitous glycolytic enzyme,

3-phosphoglycerate kinase (3PGK, 358 to 505 residues in length).

A total of 131 3PGK sequences were selected, which represent

various species of the archaean, bacterial and eukaryotic kingdoms

(Pollack et al., 2005). Ten classification tasks were defined on this

dataset as follows. The positive examples were taken from a given

kingdom. One of the phyla (with at least five sequences) was

the test set while the remaining phyla of the kingdom were used

as the training set. The negative set contained members of the

other two kingdoms subdivided in such a way that members of

one phylum could be either test or train. The division is shown

in Table 1.

Dataset C. This dataset is a subset of the COG database of

functionally annotated orthologous sequence clusters (Tatusov

et al., 2003) In the COG database, each COG cluster contains

functionally related orthologous sequences belonging to unicellular

organisms, including archaea, bacteria and unicellular eukaryotes.

For a given COG group, the positive test set included the sequences

from three unicellular eukaryotic genomes, while the positive

training set was compiled from the rest of the sequences in the

group. Of the over 5665 COGs we selected 117 that contained at

least 8 eukaryotic sequences (positive test group) and 16 additional

prokaryotic sequences (positive training group). This dataset

contained 17 973 sequences. The negative training/test sets were

obtained by randomly assigning sequences from the remaining

COGs to the two groups (see Supplementary material) Table 2.

3.2 Sequence comparison methods

Alignment-based sequence comparisons were carried out using

version 2.2.4 of the BLAST program (Altschul et al., 1990) with
a cutoff score of 25. The Smith–Waterman algorithm (Smith

and Waterman, 1981) was used as implemented in MATLAB

(MathWorks, 2004), the program implementing local alignment
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kernel algorithm (Saigo et al., 2004) was obtained from the authors

of the method.

The BLOSUM 62 matrix (Henikoff et al., 1999) was used in each
case. The Smith–Waterman comparison data on Dataset A was

taken from Liao and Noble (Liao and Noble, 2003). The BLAST

scores on Dataset C were taken from the COG database (Tatusov

et al., 2003).
Alignment-free sequence comparisons were carried out using

compression based distance measures (CBMs). The formula for

calculating CBMs using the length values of compressed strings

was adapted from (Cilibrasi and Vitányi, 2005) and can be written in

the following general form:

CBMðX‚YÞ ¼ CðXYÞ � min fCðXÞ‚CðYÞg
max fCðXÞ‚CðYÞg ‚ ð7Þ

where X and Y are sequences to be compared and C(.) denotes the
length of a compressed string, compressed by a particular compress-

or C, such as the LZW or the PPMZ algorithm (Kocsor et al., 2005).
In this study the LZW algorithm was implemented in MATLAB

while the PPMZ2 algorithm was downloaded from Charles Bloom’s

homepage (http://www.cbloom.com/src/ppmz.html).

Classifier algorithms Nearest neighbour (1NN) classification

(Duda et al., 2001) is a technique whereby a query sequence is

assigned to the a priori known class of the database entry that was

found most similar to it in terms of a distance/similarity measure.

<3NN> denotes a related method where the average of the top three

scores, obtained by comparing a query to members of a given class,

is used, and the query is assigned to the class with the best such

value. Of the top three scores, only the non-zero values were

included in the average calculation.

3.3 Performance evaluation

The evaluation was carried out via standard receiver operator

characteristic (ROC) analysis that characterizes the performance

of learning algorithms under changing conditions, such as

Table 1. 3-phosphogycerate kinase (3PGK) sequences (Dataset B)

Group Subgroup Positive Negative

Test Train Test Train

Archaea Crenarchaeota 4 11 18 98

Archaea Euryarchaeota 11 4 18 98

Bacteria Actinobacteridae 5 68 33 25

Bacteria Firmicutes 35 38 33 25

Bacteria Proteobacteria 30 43 33 25

Eukaryota Alveolata 4 39 15 73

Eukaryota Euglenozoa 5 38 15 73

Eukaryota Fungi 10 33 15 73

Eukaryota Metazoa 12 31 15 73

Eukaryota Viridaeplantae 8 35 15 73

Total: 131 sequences

aThe definition of taxonomic groups and subgroups is taken from (Pollack et al., 2005).

See Supplementary materials for further details.
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Fig. 1. Comparison of the scoring performance of various scoringmethods by

ROC analysis. (A) Dataset A (SCOP sequences), (B) Dataset B (Taxonomic

classification of 3PGK sequences) and (C) (COG sequences). The Y-value

represents the number of the families scoring better than the AUC value

indicated on the x-axis. In this representation the curves running higher

represent better performances.

Table 2. Distribution of orthologous sequences in Dataset C.

COG No. Name Positivea Negative

Train Test Train Test

COG0631 Serine/threonine

protein phosphatase

40 15 1456 1603

COG0697 DMT drug transporters

superfamily

372 14 1550 1544

COG0814 Amino_acid_permeases 61 14 1492 1521

COG0847 DNA_polymerase

III_epsilon_subunit

86 9 1498 1555

Total of 117 COGs 17973 sequences

aThe positive test sequences included eukaryotic proteins from S. cerevisiae, S. pombe

and E. cuniculi in a given COG, the negative sequences were randomly chosen from the

other COGs. See Supplementary Materials for further details.
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misclassification costs or class distributions (Egan, 1975). This

method is especially useful for protein classification as it includes

both sensitivity and specificity, based on a ranking of the objects to

be classified (Gribskov and Robinson, 1996). In our case the ranking

variable was the NN similarity or distance value (1NN or <3NN>)
obtained between a sequence and the members of the positive train-

ing set. Briefly, the analysis was carried out by plotting sensitivity

versus 1 � specificity at various threshold values, then the resulting

curve was integrated to give an ‘area under curve’ or AUC value.

We note that AUC ¼ 1.0 for a perfect ranking, while for random

ranking AUC ¼ 0.5 (Egan, 1975). If the evaluation procedure

contains several ROC experiments, one can draw a cumulative

distribution curve of the AUC values (examples shown in

Fig. 1). The integral of this cumulative curve, divided by the number

of the classification experiments is in [0,1] interval, with the higher

values representing the better performances (Liao and Noble, 2003).

These values were used as ‘AUC scores’ (Table 3).

4 RESULTS AND DISCUSSION

The datasets and the classification scenarios chosen for the evalu-

ation were selected so as to represent different types of distant

protein sequence similarities. In Dataset A (a subset of SCOP),

we attempt to recognize a protein family based on other families

of the same superfamily. The domain sequences included in this

dataset are variable in terms of length and often there is relatively

little sequence similarity between the protein families. The situation

is quite different with Dataset B. Here the sequences are uniform in

length and are highly related to each other, i.e. there is a strong

similarity both between the members of a given group (phylum) and

between the various groups. In Database C the recognition tasks are

designed to answer the question: can we annotate genomes of

unicellular eukaryotes based on prokaryotic genomes? In this data-

set the members of a given group have high similarity to each other

while there is relatively little similarity between the various groups.

The ranking performance of the various methods is summarized

in Figure 1 and Table 3. The columns of Table 3 shaded in gray

contain the results obtained with the original scores; the white

columns contain the results obtained with the various combinations

of LR scoring. It is apparent that the LRA scoring substantially

improves the ranking efficiency as indicated by the high cumulative

AUC values.

It is also apparent that the performances of the various LRA

schemes do not substantially differ among each other i.e. the

choice of the monotone decreasing function does not seem to be

critical. This is shown by the fact that the data obtained ‘without

transformation’ [i.e. using Equation (3) for distance measures and

Equation (4) for similarity measures] are nearly identical with those

obtained after transformations employing Equations (5 or 6). This

fact is also shown by the dependence of the results on the b parame-

ter in Equations (5 and 6): In general there is a large range where the

classification performance is independent of b (Fig. 2 and

Supplementary materials).

As the datasets and the algorithms are quite different in nature, so

we tend to believe that the consistent performance increase is due to

LRA scoring. On the other hand, the results are dataset-dependent:

they vary from group to group within each of the three datasets (see

Supplementary materials for details). For instance it is conspicuous

Table 3. Comparison of LRA scoring with simple scoring, using nearest neighbour classification

Algorithm used for

sequence similarity/

distance calculationsa

1NN <3NN>
LRA scoring LRA scoring

Original

score

Without

transformation

After transformation by Original

score

Without

transformation

After transformation by

Equations (3 or 4) Equation (5)b Equation (6)b Equations (3 or 4) Equation (5)b Equation (6)b

(A) Fold classification (Dataset A)

Smith–Waterman 0.8496 0.9318 0.9309 0.9304 0.8636 0.9447 0.9440 0.9439

Local alignment kernel 0.8223 0.9509 0.9393 0.9393 0.8315 0.9601 0.9428 0.9428

BLAST 0.8253 0.8918 0.9197 0.9193 0.8296 0.9019 0.9314 0.9312

LZW 0.8060 0.8468 0.8464 0.8464 0.8264 0.8627 0.8623 0.8623

PPMZ 0.6625 0.7641 0.7778 0.7779 0.6793 0.7571 0.7707 0.7708

(B) Taxonomic classification (Dataset B)

Smith-Waterman 0.7906 0.9442 0.9169 0.9164 0.7778 0.9540 0.9142 0.9139

BLAST 0.7922 0.9411 0.9157 0.9144 0.7780 0.9514 0.9129 0.9124

Local alignment kernel 0.7862 0.9393 0.9204 0.9200 0.7765 0.9423 0.9139 0.9137

LZW 0.7370 0.8658 0.8642 0.8642 0.7625 0.8926 0.8915 0.8915

PPMZ 0.7523 0.9004 0.9030 0.9030 0.7588 0.9024 0.9051 0.9051

(C) Functional classification based on BLAST scores (Dataset C)

COG0631 0.8659 0.9961 0.9961 0.9961 0.8659 0.8663 0.9961 0.9961

COG0697 0.8566 0.8568 0.9901 0.9901 0.8565 0.8568 0.9891 0.9891

COG0814 0.8208 0.8212 0.9909 0.9909 0.8207 0.8212 0.9906 0.9906

COG0847 0.7773 0.9919 0.9919 0.9919 0.7773 0.7773 0.9919 0.9919

Average of 117 COGs 0.9873 0.9874 0.9994 0.9994 0.9873 0.9874 0.9994 0.9994

aThevalues represent the integral of thecumulativeAUCof the54ROCcurves calculated for thedata (examples shown inFigure1).Themaximal values ineach roware indicated inbold.

‘Original score’: the score of theoriginalmethodwasused for ranking. ‘Without transformation’ refers to ratio calculation according toEquation (4) for similarity scores andEquation (3)

for distance measures. The references are given in the text.
bb= 0.0001
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that Dataset C contain many groups that are perfectly separated (79

out of the 117 COGs have an AUC of 1.000 using BLAST without

LRA scoring), as shown by the long vertical region of the curves in

Figure 1C. Nevertheless, the increase caused by LRA scoring is

apparent on the less-perfect COG groups of which we included four

in Table 3, (C).

The group specific behavior is also apparent in how the results

depend on the value of the b parameter. In general, we find that there

is a large range where the classification performance is independent

of b, but as the value approaches to one, there is a substantial

variation between the groups. Typically (cf. Fig. 2), there is a

sometimes substantial decrease in the AUC value, but in some

cases there is a slight increase (details in Supplementary materials).

Summarizing we can conclude that LRA scoring provided a

consistent performance increase in the protein sequence classifica-

tion tasks analyzed in this work. The extent of the improvement

seems to depend on the protein group as well as on the database. We

note that the AUC value characterizes the ranking performance of a

variable (in our case the LR score), but it does not describe the

actual performance of any particular classifier that can be built using

that variable. For practical purposes one can build classifiers using

threshold values, such as the empirical score or E-value thresholds
used in conjunction with BLAST (Altschul et al., 1990), or by using
any of the database-dependent optimization techniques (Duda et al.,
2001). Finally we mention that the principle described here can be

easily implemented, and the fact that it applies to a wide range of

scoring methods and classification scenarios makes us hope that it

will be applicable also to other areas of protein classification.
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parameter. Dataset C (COG sequences). The error bars denote standard

deviation.
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