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Evolution of robust and efficient system topologies
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Abstract

Mutation/selection algorithms were applied to increase the efficiency and the robustness of sparse random networks. Selection for
better efficiency leads to the well-known star topology, while selection for robustness only results in a relatively dense core and a small
periphery. Concomitant selection for both efficiency and robustness leads to networks with intermittent center/periphery values. Net-
works evolving under multiple attack regimes develop distinct topologies with larger cores, and are characterized by parameter distri-
butions different from those developing under single-attack regimes.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The emergence of self organized network structures is
one of the key aspects of molecular and cellular interac-
tions, including those between the molecular and cellular
components of the immune system. In order to remain sta-
ble in time and resistant to attack, biological networks
must evolve in a particular way. One of the fundamental
models proposed for network evolution is that of Bara-
bási’s that suggests a link between the growth of a network,
and its topology as well as robustness [1]. Other models,
including the one discussed here, rearrange a given size net-
work and look at the resulting topologies [2–6]. Rearrange-
ment (‘‘rewiring’’) models follow the traditions of
evolutionary modeling, i.e. they optimize a fitness function
that combines various factors into one numerical index.
Naturally, there are many ways to formulate and combine
the components of the fitness function and testing the pos-
sibilities makes the process computationally expensive.
Here we describe another approach in which all parameters
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are treated essentially as constraints: a mutation is selected
if all of its parameters exceed or at least reach the corre-
sponding values of the previous state, so there are no tun-
able parameters. In a broad sense, this approach bears on
Kimura’s neutralist theory evolution; moreover it is com-
putationally efficient so it allows one to study a wide range
of phenomena.

Our main goal was to study the evolution of robust yet
efficient network topologies and to see if selecting muta-
tions only for efficiency or only for attack tolerance
(robustness) will influence network topology. Our
approach was inspired by the study of Venkatasubramani-
an and associates who showed that selection of efficient and
robust networks leads to certain patterns [3], as well as by
our previous work on the attack tolerance of sparse net-
works [7]. Here we show that concomitant selection for effi-
ciency and robustness influences the fundamental
topological properties of the network, and that evolution
under multiple attacks leads to distinct topologies.

2. Methods

The two fundamental network properties we deal with
are efficiency and robustness. The global efficiency [8] of
a network is defined as:
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Fig. 1. A simple model of network evolution. At each step an edge is
rewired at random. If the new topology is more fitted according to the
selected fitness criteria, the new network is used for the next step.
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where n is the number of nodes, and dij is the shortest path
between the nodes i and j. The robustness of a system can
be described as a property, such as efficiency, calculated
after attack (Et) expressed as a fraction of the same prop-
erty (E) of the original network.

R ¼ Et

E
ð2Þ
Fig. 2. Example of network topologies. A random network of 100 nodes and
efficiency; R, robustness; P, periphery. Note that the parameter P% of (d) is b
for the attacks we used a strategy in which the node with
the highest capability to mediate information between
other nodes was removed. This capability is expressed by
the betweenness centrality expressed as:

CBðvÞ ¼
X

s 6¼v 6¼t

rstðvÞ
rst

ð3Þ

where rst(v) is the number of shortest paths between nodes
s and t that pass through the node m, and rst is the total
number of shortest paths between nodes s and t [9]. The
robustness against multiple attacks was assessed by maxi-
mal damage strategy [10], by successively removing the five
most central nodes in terms of CB, with recalculation of the
CB values after each attack. So the value of Et in Eq. (2)
was calculated after five attacks. Finally, we used a simple
measure, periphery %, defined as the % of the nodes with
degree = 1.

For modeling the evolution of a network we start with a
random network with a given number of nodes and edges
and then change one end-position of a randomly chosen
edge.

A mutation is accepted if the target property (E, R or
both) is equal or better than before the mutation. This
120 edges (a) was subjected to selection under various regimes (b–d) E,
etween (b) and (c).



Table 1
Comparison of network parameters

Parameter Initial random graph Criterion of selection

5 attack R E + 5 attack R E + 1 attack R E

Efficiency 0.22 0.21 0.23 0.28 0.50
R (5 attacks) 0.47 0.88 0.89 0.55 0.00
R (1 attack) 0.91 0.98 0.98 0.99 0.04
Periphery% 31 31 44 68 77
Avg. nn (degree) 3.22 3.76 4.62 7.88 86.86
Diameter 14.10 15.00 11.70 8.50 2.00
Radius 7.60 8.30 6.80 4.60 1.00

The values are the average of 20 simulations. R, robustness; E, efficiency; nn, nearest neighbor (also see [11]).
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Fig. 3. Degree distribution of networks evolved under single and multiple
attacks regimes. The labels denote the criterion of selection used.
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method is straightforward but it may lead to local maxima
in the search space of network topologies, so we used a
genetic algorithm that has better convergence to global
maxima. Our algorithm can be outlined as follows:

1. Start with a population of random graphs encoded as a
chromosome describing each graph topology.

2. A number of graphs ‘‘individuals’’ are selected for
crossover and mutation. Crossover is done by exchang-
ing a number of relevant subgraphs. The mutation
means rewiring an edge at random. The crossover and
mutation rates are set heuristically to insure better
convergence.

3. A new individual is accepted if the graph passes the effi-
ciency/robustness criteria.

Steps 2 and 3 are repeated until the appearance rate of
the most fitted individuals significantly decreases.

This procedure reproducibly converges to the same
or better optima as purely random mutation and selec-
tion, so in spite of the size of the topological space we
are confident about the quality of the final optima
(Fig. 1).
3. Results and discussion

We modeled the evolution of sparse graphs with 100
nodes and 120 edges, which roughly corresponds to the
node/edge ratio of gene-regulation networks. Some typical
structures are shown in Fig. 2. Evolving the network using
an efficiency-only rule leads to the well-known star topol-
ogy where the center is formed by one (or a few) nodes
and all other nodes are peripheral (A). Evolution under a
robustness-only regime results in a large core and a small
periphery, with the nodes apparently preserving the small
degrees seen in the initial network. Evolution under both
efficiency and robustness constraints leads to the formation
of a strong center and a larger periphery. It thus appears
that robustness strengthens the core, while efficiency
increases the periphery.

We found little correlation between the properties men-
tioned above; on the other hand the kind of attack strategy
used had a tangible effect on the distribution of some net-
work parameters (Table 1). Selection against multiple
attacks resulted in an altered degree distribution as com-
pared to selection against single attack (Fig. 3).

We observed circular patterns similar to those described
by Venkatasubramanian and associates [3], however the
data did not allow us to conclusively associate them with
any of the factors studied here (data not shown).

We conclude that the topology of the networks changes
when the networks adapt to an environment where both
efficiency and robustness are required, and the presence
of multiple attacks bring about further topology changes
as compared to single attacks.
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