
Equivalence Learning in Protein Classification

Attila Kertész-Farkas1,2, András Kocsor1,3, and Sándor Pongor4,5

1 Research Group on Artificial Intelligence of the Hungarian Academy of Sciences
and University of Szeged, Aradi vértanúk tere 1, H-6720, Szeged, Hungary

{kfa, kocsor}@inf.u-szeged.hu
2 Erasmus Program, Technische Universität Dresden, Germany

3 Applied Intelligence Laboratory, Petofi S. sgt. 43, H-6725, Szeged, Hungary
4 Bioinformatics Group, International Centre for Genetic Engineering and

Biotechnology, Padriciano 99, I-34012 Trieste, Italy
pongor@icgeb.org

5 Bioinformatics Group, Biological Research Centre, Hungarian Academy of
Sciences, Temesvári krt. 62, H-6701 Szeged, Hungary

Abstract. We present a method, called equivalence learning, which ap-
plies a two-class classification approach to object-pairs defined within a
multi-class scenario. The underlying idea is that instead of classifying
objects into their respective classes, we classify object pairs either as
equivalent (belonging to the same class) or non-equivalent (belonging to
different classes). The method is based on a vectorisation of the similarity
between the objects and the application of a machine learning algorithm
(SVM, ANN, LogReg, Random Forests) to learn the differences between
equivalent and non-equivalent object pairs, and define a unique kernel
function that can be obtained via equivalence learning. Using a small
dataset of archaeal, bacterial and eukaryotic 3-phosphoglycerate-kinase
sequences we found that the classification performance of equivalence
learning slightly exceeds those of several simple machine learning algo-
rithms at the price of a minimal increase in time and space requirements.

1 Introduction

The classification of proteins is a fundamental task in genome research. In a typi-
cal application, a protein sequence object (a string of several tens to several hun-
dred characters) has to be classified into one of the several thousand known classes,
based on a string similaritymeasure. Sequence similarity is thus a key concept since
it can imply evolutionary, structural or functional similarity between proteins.

Early methods of protein classification relied on the pairwise comparison of
sequences, based on the alignment of sequences using exhaustive dynamic pro-
gramming methods [1] [2] or faster, heuristic algorithms [3][4]. Pairwise compar-
ison yielded a similarity measure that could be used to classify proteins on an
empirical basis. The next generation of methods then used generative models for
the protein classes and the similarity of a sequence to a class was assessed by
a score computed between the model and the sequence. Hidden Markov Models
(HMMs) are now routinely used in protein classification [5], but there are many

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 824–837, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Equivalence Learning in Protein Classification 825

other, simpler types of description in use (for a review, see: [6]). Discriminative
models (such as artificial neural networks and support vector machines etc.) are
used in a third generation of protein classification methods where the goal is to
learn the distinction between class members and non-members. Roughly speak-
ing, 80-90% of new protein sequence data can be classified by simple pairwise
comparison. The other, more sophisticated techniques are used mostly to verify
whether a new sequence is a novel example of an existing class or it represents a
truly new class in itself. As the latter decisions refer to the biological novelty of
the data, there is a considerable interest in new, improved classification methods.

Kernel methods represent a subclass of discriminative models in which a pair-
wise similarity measure calculated between objects is used to learn the decision
surface that separates a class from the rest of the database. The kernel function
can be regarded as a similarity function which has the additional property of
always being positive semi-definite, which allows many novel applications to non-
linear problems [7]. In the context of protein classification, kernel methods have
an important practical advantage: the similarity measures developed in protein
classification can be used to construct kernel functions, and so decision making
can directly capitalize on the considerable empirical knowledge accumulated in
various fields of protein classification. Over the past decade, many kernels have
been developed for sequences such as the String kernel [8], Mismatch kernel [9],
Spectrum kernel [10], Local Alignment Kernel [11] and the Fisher kernel [12].
For a good review of these applications, see [7].

This work aims to use a conceptual approach that is slightly different from the
mainstream use of kernel functions. Let us first consider a database of objects
and a similarity measure computed between each pair of objects. This setup can
be visualized as a weighted graph (network) of similarities where the nodes are
the proteins and the weighted edges represent the similarities between them.
The network can also be represented as a symmetrical matrix in which the
cells represent the pairwise comparison measures between the objects. Figure
1a shows a hypothetical database of 8 objects. We can vaguely recognize two
groups in which the members are more similar to each other than to the objects
outside the groups. Let us now suppose that an expert looks at the similarity
data and decides that the two groups represent two classes, A and B, and there is
another object that is not a member of either of these. Figure 1b illustrates this
new situation. The members of the groups are now connected by an equivalence
relation that exists only between the members of a given group. As a result,
the similarity matrix becomes a simpler equivalence matrix in which only the
elements between the members of the same class are non-zero. The aim of this
study here is to use a similarity matrix given between a set of objects, and use
it to learn the equivalence matrix defined by the classification task, as shown in
the bottom part of Figure 1. We term this approach equivalence learning, which
is characterized as follows. Protein classification methods seek to classify the
objects, i.e. the nodes of the similarity network, which is a multi-class problem.
In contrast, here we try to classify the edges of the similarity network into just
two classes, one signifying equivalence the other the lack of it.



826 A. Kertész-Farkas, A. Kocsor, and S. Pongor

20 7 8 9 0 2 0 3

7 25 8 4 3 5 6 0

8 8 23 8 1 0 1 0

9 4 8 26 3 1 2 0

0 3 1 3 30 18 26 1

2 5 0 1 18 28 23 4

0 6 1 2 26 23 29 0

3 0 0 0 1 4 0 29

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 0

0 0 0 0 1 1 1 0

0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 1

A B

C

A

A

B

B

C

C

A B

C

A

A

B

B

C

C

a) similarity matrix b) equivalence matrix

Fig. 1. Principle of Equivalence Learning (EL) I. A similarity matrix (left) can be
determined by an all vs. all comparison of a database using algorithms such as BLAST
or Smith-Waterman. The equivalence matrix (right) is a representation of groups (A,B)
and an outlier identified by human experts. EL tries to learn the equivalence.

In more detail, a sequence pair is called equivalent when both of them belong
to the same sequence group and is called non-equivalent or distinct when they do
not. We define the equivalence function that returns one for equivalent sequences
and zero for non-equivalent sequences taken from a different group - where the
group could be a protein family, superfamily, fold or class. This function can be
formulated as follows

δ(s, t) =
{

1 s and t belong to the same sequence group,
0 otherwise.

Since the equivalence function defined over the sequence pairs gives a partition
(equivalent/non-equivalent sequence pairs), learning this function essentially be-
comes a two-class classification problem that can be solved by one of the existing
classification schemes. For clarity, the process is shown in Figure 2. A key issue
here is to decide how we should represent the edges of the similarity network
so that we can efficiently predict equivalence. A simple numerical value is not
sufficient since, as shown in the example of Figure 1, a value 9 is sufficient for
class membership in class A, but not in class B. As a solution, we will use a
vectorial representation for the edges, hence we will need projection methods in
order to represent a sequence pair in one vector. Now let P : S × S → R

n be
such a projection function and let the corresponding database be

L = {(xi, yi) | xi = P (si, ti), yi = δ(si, ti), si, ti ∈ S}, (1)

where S denotes the set of sequences.
The construction of an equivalence function has been proposed by Cristianini

et al who defined the concept as the ideal kernel, along with a kernel alignment



Equivalence Learning in Protein Classification 827

equivalence non-equivalence

Fig. 2. Principle of equivalence learning II. Equivalence learning is a two-class problem
defined on object pairs.

measure that quantifies the difference between a kernel and the ideal one [17].
Semidefinite programming techniques were then used to learn the kernel matrix
from data and it was shown that using the labeled part of the data one can learn
an embedding too for the unlabeled part [18]. Tsang and Kwok once suggested
a feature weighting technique that allows one to approximate the ideal kernel
[19].

In this paper we will examine how an equivalence function can be learnt with
a standard machine learning method such as Artificial Neural Networks (ANNs)
[13], Support Vector Machines (SVMs) [14] Logistic Regression (LogReg) [15] or
Random Forest (RF) [16]. These methods learn a function f and for any sequence
pair (s, t) return a score f(z), where z = P (s, t) and P is a projection function.
If this score is greater than a certain threshold then the sequence pair classified
is an equivalent pair, otherwise it is a non-equivalent pair. Unlike a class label
predicted for a single protein, the score f(z) can be considered as a similarity
measure for a sequence pair (s, t) and thus the learned machine can be regarded
as a fast similarity function for a sequence pair. In Section 2.3 we offer a way of
constructing a kernel function from a decision boundary f(z) obtained by SVM.
Section 3 describes experiments that illustrate how these method can learn the
equivalence function and how we can evaluate them in a protein classification
context. Section 4 then gives a brief summary along with some conclusions.

2 Methods

2.1 Vectorization Step

Now we will present a way of defining projection functions which map any se-
quence pair into a fixed-length vector of real numbers, that is P : S × S → R

n.
First, we define a method to vectorize a single sequence into a vector. The

essential idea behind this is that a chosen protein sequence can be effectively cap-
tured by asking how similar a protein is to a large collection of other proteins
[20][21]. Let us view a fixed set of sequences {f1, f2, . . . , fn} ⊆ S as a feature
set and an arbitrary similarity function D. For a sequence s ∈ S let the corre-
sponding vector w whose components are indexed by fi and its corresponding



828 A. Kertész-Farkas, A. Kocsor, and S. Pongor

value wfi be the similarity score between fi and the target sequence s, that is
φD : S → R

n such that φD(s)fi = D(s, fi), where vi denotes the component
of vector v indexed by i. A mapping of this type is also known as an empirical
feature map [22].

The next step is to form a vector from two sequence objects. Table 1 sum-
marizes a few simple methods which were used in our experiments. For ease of
notation the operators a · b,

√
a and an on R were extended to vectors and they

were defined on vectors in a coordinate-wise manner, i.e. for any vector u, v ∈ R
n

(u · v)i = uivi, (
√

v)i =
√

vi and (vn)i = (vi)n. We should note that unlike other
operators the concatenation operator maps to R

2n instead of R
n.

Table 1. Summary of the used vector composition method

Name Formula Description
Concatenation CC(u, v) = (u, v) gives the concatenation of two vector
Sum C+(u, v) = u + v summarizes the vector components
Product C•(u, v) = u · v product of the vector components
Quadratic CQ(u, v) = (u − v)2 quadratic distance between the components
Hellinger CH(u, v) = (

√
u −

√
v)2 a normalized form of quadratic distance

We use the notation PC
V : S × S → R

n
+ for the projection function which

maps any sequence pair into an n-dimensional vector space. The subscript V
of this function denotes the vectorization method for each sequence and the
superscript C defines the vector composition method. For example, if the Smith-
Waterman (SW ) similarity function is used to vectorize a sequence, and the
product function C• is used to construct one vector from two, then the projection
function we get will be denoted by PSW

• (x, y) = C•(φSW (x), φSW (y)).

2.2 Classifier Algorithms

Now the machine learning methods on the set L defined by Eq. 1 should be able
to learn an equivalence function. In the following section we will give a short
summary of classification methods used in our experiments.

Artificial Neural Networks (ANN) are good at fitting functions and recogniz-
ing patterns. In fact there is a proof that a fairly simple neural network can fit
any practical function f(x) = y. An ANN is composed of interconnected sim-
ple elements called neurons and organized in levels. In our study the network
structure consisted of one hidden layer with 40 neurons and the output layer
consisted of one neuron. In each neuron the log-sigmoid function was used as
the transfer function and the Scaled Conjugate Gradient (SCG) algorithm was
used for training. The package we applied was the Neural Network Toolbox 5.0
version part of Matlab.

The Support Vector Machine (SVM) gives a decision boundary f(z) = 〈z, w〉+
b (also called a hyperplane) with the largest margin between the positive and



Equivalence Learning in Protein Classification 829

negative classes. Replacing the inner product by a kernel function leads to a
nonlinear decision boundary in the feature space. In our experiments the Ra-
dial Basis Function kernel was used and its width parameter σ was the median
Euclidean distance from any positive training example to the nearest negative
example. During the training the class labels 0 for the miscellaneous pair were
replaced by -1. Here the SVM used was the LibSVM [23]. The One-Class SVM
also also evaluated to learn equivalence members.

The Logistic Regression (LogReg) is one of the generalized linear models which
is used when the response variable is a dichotomous variable (i.e. it can take one
of two possible values) and the input variables are continuous. Unlike linear
regression, logistic regression does not assume a linear relationship between the
input and the output, but it does exploit the advantages of the linear methods.
To do this, it uses an ln

(
p

1−p

)
= 〈w, x〉 + b function, called a link function,

and thus it leads to a non-linear relationship, where the p is the probability that
yi = 1. In our study the LogReg was part of Weka version 3-4.

The Random Forest (RF) technique is a combination of decision trees such
that each tree is grown on a bootstrap sample of the training set. For each node
the split is chosen from m � M variables (M being the number of dimensions)
selected from an independent, identically distributed random variable taken from
the feature set. In our experiments 50 trees were used and the number of features
m was set to log l + 1, where l is the number of input patterns. The RF was part
of Weka Version 3-4.

2.3 Learned Kernel Functions

Here we present a way of constructing a kernel function from the decision bound-
ary f(z) = 〈z, w〉 − ρ obtained by One-Class SVM. After training a One-Class
SVM on the set of equivalence members L = {xi | xi = P (si, ti), 1 = δ(si, ti)}
the w parameter of the decision boundary can be expressed as a weighted lin-
ear combination of support vectors, that is w =

∑
i αixi, where αi > 0 are the

corresponding Lagrangian multiplier. Here the support vectors are equivalence
sequence pairs which belong to L. Thus the decision function

f(P (s, t)) =
∑

i
αi〈P (s, t), xi〉 − ρ (2)

can be regarded as a similarity function over sequence pairs. Moreover, omitting
the ρ additive constant from f does not change the essence of similarity. In the
following lemma we shall examine what kind of projection function would make
a kernel function.

Lemma 1. Let Pφ
• , Pφ

+, Pφ
Q, Pφ

H : S × S → R
n
+ be a symmetric projection

function, where φ : S → R
n
+ is an arbitrary positive feature mapping. Using

support vectors xi and their corresponding Lagrangian multiplier αi > 0 the
functions



830 A. Kertész-Farkas, A. Kocsor, and S. Pongor

SV K•(s, t) =
∑

i
αi exp(σ〈Pφ

• (s, t), xi〉) (3)

SV K+(s, t) =
∑

i
αi exp(σ〈Pφ

+(s, t), xi〉) (4)

SV KQ(s, t) =
∑

i
αi exp(−σ〈Pφ

Q(s, t), xi〉) (5)

SV KH(s, t) =
∑

i
αi exp(−σ〈Pφ

H(s, t), xi〉) (6)

are kernel functions over S ×S, where σ > 0. The class of such kernel functions
is called the Support Vector Kernel (SVK).

For more detail about kernel functions and their properties, the reader should
peruse [25].

Proof. The class of kernel function is closed under direct sum and positive scalar
multiplication. Here, it is sufficient to prove that the exponential expressions are
kernels. First, let θ a positive valued vector. Then 〈Pφ

• (s, t), θ〉 is a kernel function
because it is a weighted inner product. This follows from the fact that

〈Pφ
• (s, t), θ〉 = 〈φ(s) · φ(t), θ〉 = φ(s)Θφ(t)

where Θ is a diagonal matrix whose diagonal elements are taken from θ. Thus
exp(σ〈Pφ

• (s, t), θ〉) is a kernel too.
The statement for Eq. 4 follows immediately from

exp(〈Pφ
+(s, t), θ〉) = exp(〈φ(s) + φ(t), θ〉) = exp(〈φ(s), θ〉 + 〈φ(t), θ〉) =

= exp(〈φ(s), θ〉) exp(〈φ(t), θ〉)

because a function of the form k(x, y) = f(x)f(y) is always a kernel function.
And 〈P φ

Q(s, t), θ〉 is a quadratic Euclidian metric weighted by θ, that is

〈Pφ
Q(s, t), θ〉 = 〈φ2(s) + φ2(t) − 2φ(s)φ(t), θ〉

= 〈φ2(s), θ〉 + 〈φ2(t), θ〉 − 2〈φ2(s)φ2(t), θ〉
= φ(s)Θφ(s) + φ(t)Θφ(t) − 2φ(s)Θφ(t).

Thus exp(−σ〈Pφ
Q(s, t), θ〉) is a kernel. The assertion for exp(−σ〈Pφ

H(s, t), θ〉) can
be proved in a similar way.

The training points in L are also vectorized sequence pairs represented by a
projection function. Hence the training points are a positive-valued vector, and
the support vectors obtained are also positive-valued vectors. This proves our
statement. 	


3 Experiments

Dataset and performance evaluation. 3PGK is a set of 131 sequences representing
the essentially ubiquitous glycolytic enzyme, 3-phosphoglycerate kinase (3PGK,



Equivalence Learning in Protein Classification 831

358 to 505 residues in length) - obtained from 15 archaean, 83 bacterial and
33 eukaryotic species. This dataset was designed to show how an algorithm will
generalize to novel, distantly related subtypes of the known protein classes [26].
The dataset is freely available at [27].

The sequences were represented by the so-called pairwise method, where the
feature set was the whole train set sequences containing both positive and neg-
ative sequences. For the underlying similarity measure we chose two alignment-
based sequence comparisons methods, namely the BLAST and Smith-Waterman
algorithms. We used version 2.2.4 of the BLAST program with a cutoff score of
25, the Smith-Waterman algorithm was used as implemented in MATLAB. The
BLOSUM 62 matrix [28] was used in both cases.

The performance evaluation was carried out by standard receiver operator
characteristic (ROC) analysis, which is based on the ranking of the objects to be
classified [29]. The analysis was performed by plotting sensitivity vs. 1-specificity
at various threshold values, and the resulting curve was integrated to give an
”area under the curve” (AUC) value. We should remark here that for a perfect
ranking AUC = 1.0 while for a random ranking AUC = 0.5. In our experiments
the ROC score for the 3PGK dataset was AUC averaged over 8 tasks.

Equivalence learning. For each classification task, the set of training pairs L de-
fined in Eq. 1 consists of pairs made up from training sequences. The equivalence
function δ was calculated via class labels. Here a sequence pair (s, t) is treated
as equivalent if s and t belong to the same species and their equivalence score is
1. If they belong to two different species, then their equivalence score is 0. This
δ may be regarded as a similarity function and be denoted by DM where the
subscript M stands for a given machine. Thus for an ANN the similarity func-
tion obtained is denoted by DANN . δ was learned on L by several classification
methods.

During the evaluation, a test sequence u was paired with each of the train
sequences s to check whether they belong to the same group. For the ROC
analysis these sequence pairs were ranked by their score obtained via DM (u, s).
As a comparison the sequence pairs were also ranked by their Smith-Waterman,
and their BLAST score. The corresponding ROC score for these functions is
given in Table 2.

The train pairs and test pairs can be arranged in a matrix MD whose columns
are indexed by train sequences and whose rows are indexed by test sequences.
Then an element of (MD)s,t is a similarity score of (s, t) obtained by a measure
D. A heat map representation of a train and test matrix of one of 8 classification
tasks is shown in Figure 3 below.

Train set construction. To learn an equivalence function, we randomly selected a
small part of the positive and negative pairs from the train sequences. This step
is necessary in order to avoid overlearning, to speed up the training and to reduce
the training set to a computationally manageable size. In order to select the best
number of training pairs we calculated the learned similarity function by varying
the number of datasets and repeated the procedure 10 times (Figure 5). We may



832 A. Kertész-Farkas, A. Kocsor, and S. Pongor

a b c

Fig. 3. A heat map representation of train and test matrices from the 3PGK database.
The train matrix (above) is an equivalence matrix over train sequences and the test
matrix (below) is an equivalence matrix between train and test sequences. The three
sequence groups are easily recognizable in the equivalence matrix (a). The equivalence
was learnt by RF where the sequence pair was projected by P SW

+ . The obtained train
and the test matrices are displayed in (b). The Smith-Waterman similarity matrices
(c) are also shown for comparison.

Table 2. Evaluation of the equivalence function learning using different vectorization
methods.

DSV M DSV K DANN DLogReg DRF

CC 0.9146 n.a 0.8600 0.6856 0.8311
SW C+ 0.9107 0.6308 0.8948 0.7110 0.8446
0.73021 C• 0.9022 0.6508 0.8870 0.6452 0.8516

CQ 0.8473 0.7901 0.8135 0.7448 0.8383
CH 0.8586 0.7919 0.8429 0.7571 0.8250
CC 0.9193 n.a 0.8800 0.6879 0.8605

BLAST C+ 0.9184 0.6339 0.8906 0.7189 0.8649
0.73721 C• 0.9085 0.6565 0.8839 0.6517 0.8703

CQ 0.8561 0.7966 0.8068 0.7530 0.8209
CH 0.8587 0.8037 0.8486 0.7617 0.8548

1The corresponding ROC score for the similarity method to measure how it can
express the equivalence.

conclude here that the standard deviation is generally small and increasing the
training points only makes it smaller. We should mention here that a reasonable
choice of number of training points depends on the variability of the training



Equivalence Learning in Protein Classification 833

10 30 50 100 200 300 500 750 1000 1500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

R
O

C
 s

co
re

Number of positive and negative training points respectively

 

 

SVM
ANN
RF
SVK

H

LogReg

Fig. 4. Dependence of the equivalence learning results on the train set size. Except for
the SV KH case the P SW

+ projection method was applied.

set; protein groups in real-life databases are known to be vastly different in the
number of members, in average protein size, similarity within group and so on. In
our experiments 500 positive and negative training pairs were used for learning,
respectively.

In the experiments we dealt only with the situation where the class labels
are known for the negative sequences. If the class labels are unavailable, (i.e. it
cannot be decided if two negative sequences belong to the same group), there
are two potential solutions. First, any (x, y) pair where either or both of them
are negative sequences, can be treated as a non-equivalent pair. In this case, the
learner learns that a sequence pair belong to the particular species. The second
possibility is that only the positive-negative sequence pairs are considered non-
equivalent, and negative-negative pairs are removed from the training set. In our
study, only the first method gave better results than the second (data not shown).

Iteration. The functions obtained by the machine learning algorithms can be
used as an underlying similarity function in the pairwise vectorization approach.
This step can be repeated in an iterative fashion. Here, as shown in Figure 5, the
results become stable after 3-4 steps. Our empirical test told us that the trained
similarity matrices (Figure 5, top) really converge to the ideal equivalence matrix
but the test similarity matrix (bottom) kept some of its original mistakes, and
during the iteration process these errors became more pronounced.

3.1 Classification Results Via Learned Similarity Functions

These learned similarity functions were evaluated in a protein classification con-
text. A sequence was vectorized by the pairwise vectorization method and the
feature set was the whole train sequence set. For the underlying similarity func-
tions DANN , DSV M , DLogReg, DRF and the original Smith-Waterman were
used, while the classification method employed was SVM. The results obtained
are listed in the table below.



834 A. Kertész-Farkas, A. Kocsor, and S. Pongor

ROC score 0.8879 0.9229 0.899 0.8779 0.8784

Fig. 5. An iteration of ideal similarity learning by RF with P SW
+ . The leftmost heat

map pair is the target equivalence matrix which was calculated by using class labels.

Table 3. Evaluation of the sequence classification via SVM

DSV M DANN DLogReg DRF

CC 0.9694 0.9778 0.7709 0.9545
C+ 0.9749 0.9866 0.7802 0.9700

SVM C• 0.9759 0.9691 0.8730 0.9712
0.96511 CQ 0.9641 0.8823 0.9360 0.9434

CH 0.9614 0.9242 0.9499 0.9460

1The ROC score obtained by SVM classification with SW feature extraction.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

ROC − score

N
um

be
r 

of
 fa

m
ili

es

 

 

LAK − 0.98305
SVK

H
 − 0.9737

SVK
Q
 − 0.97262

SVK
•
 − 0.97076

SVK
+
 − 0.6757

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

7

8

9

median − RFP

 

 

LAK − 0
SVK

H
 − 0.016129

SVK
Q
 − 0.016129

SVK
•
 − 0.024194

SVK
+
 − 0.30599

Fig. 6. SVM classification results with kernel functions. Here the BLAST algorithm
was used for feature extraction.

Learned kernel results. Experiments for the support vector kernel. The results
we got are summarized in Table 3. For a comparison, the Local Alignment Kernel
was also evaluated. The program was used with the parameter values suggested
by the authors [11].



Equivalence Learning in Protein Classification 835

4 Conclusions

We described a method termed equivalence learning, which applies a two-class
classification approach to object-pairs defined within a multi-class scenario. The
underlying idea is that instead of classifying objects into their respective classes,
we classify object pairs either as equivalent (belonging to the same class) or
non-equivalent (belonging to different classes). The method is based on a vec-
torisation of similarity between the objects. We should note that this is one of
the most important steps and the results are sensitive to small changes. We think
further methods should be developed to characterize similarity by several values,
represented in vector form rather than by just a single value. The application of
kernel methods to routine problems in protein classification is apparently ham-
pered by the high dimensionality of vector representations. Equivalence learning
is plagued by the same problem, so the reduction of dimensionality may be
an important step if equivalence learning is to be applied to real-life protein
databases.

The method is more complex than simple machine learning algorithms but
its time and storage space requirements are not exceedingly high as compared
to these methods, and in some cases it provides a better performance.

Finally we should mention that even though the expression equivalence learn-
ing may be novel in machine learning, it has already been used in cognitive
studies [30]. We hope that this concept will become more popular in machine
learning.

Acknowledgements

The work at ICGEB was supported in part by grants from the Ministero
dell’Universita e della Ricerca (D.D. 2187, FIRB 2003 (art. 8), ”Laboratorio In-
ternazionale di Bioinformatica”). A. Kocsor was supported by the Janos Bolyai
fellowship of the Hungarian Academy of Sciences.

References

1. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453
(1970)

2. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147, 195–197 (1981)

3. Pearson, W.R.: Rapid and sensitive sequence comparison with FASTP and FASTA.
Methods Enzymol. 183, 63–98 (1985)

4. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. J. Mol. Biol. 215, 403–410 (1990)

5. Eddy, S.: HMMER Biological sequence analysis using profile hidden Markov mod-
els, Version 2.3.2 (2003) http://hmmer.janelia.org/

6. Mount, D.W.: Bioinformatics: Sequence and Genome Analysis. 2nd edn. Cold
Spring Harbor Laboratory Press (2004)

http://hmmer.janelia.org/


836 A. Kertész-Farkas, A. Kocsor, and S. Pongor

7. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge (2004)

8. Lodhi, H., Saunders, C., Cristianini, N., Watkins, C., Shawe-Taylor, J.: String
Matching Kernels for Text Classification. Journal of Machine Learning Research 2,
419–444 (2002)

9. Leslie, C., Eskin, E., Weston, J., Noble, W.S.: Mismatch string kernels for SVM pro-
tein classification. In: Advances in Neural Information Processing Systems, vol. 15,
MIT Press, Cambridge (2003)

10. Leslie, C., Eskin, E., Noble, W.S.: The spectrum kernel: A string kernel for SVM
protein classification. In: Proceedings of the Pacific Symposium on Biocomputing
(PSB-2002), World Scientific Publishing, Singapore (2002)

11. Vert, J-P., Saigo, H., Akatsu, T.: Local alignment kernels for biological sequences.
In: Schölkopf, B., Tsuda, K., Vert, J.-P. (eds.) Kernel methods in Computational
Biology, pp. 131–154. MIT Press, Cambridge (2004)

12. Jaakkola, T., Diekhans, M., Haussler, D.: Using the Fisher kernel method to detect
remote protein homologies. In: Proc Int. Conf. Intell. Syst. Mol. Biol. pp. 149–158
(1999)

13. Bishop, D.M.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford
(1995)

14. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, New York (1998)
15. Rice, J.C.: Logistic regression: An introduction. In: Thompson, B. (ed.) Advances

in social science methodology, vol. 3, pp. 191–245. JAI Press, Greenwich, CT (1994)
16. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)
17. Cristianini, N., Kandola, J., Elisseeff, A., Shawe-Taylor, J.: On Kernel Target Align-

ment. In: Advances in Neural Information Processing Systems, vol. 14, pp. 367–373
(2001)

18. Lanckriet, G.R.G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learn-
ing the Kernel Matrix with Semidefinite Programming. Journal of Machine Learn-
ing Research 5, 27–72 (2004)

19. Kwok, T.J., Tsang, I.W.: Learning with idealized Kernels. In: Proc. of the 28.
International Confernece on Machine Learning, Washington DC (2003)

20. Liao, L., Noble, W.S.: Combining pairwise sequence similarity and support vector
machines for detecting remote protein evolutionary and structural relationships. J.
Comput. Biol. 10, 857–868 (2003)

21. Vlahovicek, K., Kajan, L., Agoston, V., Pongor, S.: The SBASE domain sequence
resource, release 12: prediction of protein domain-architecture using support vector
machines. Nucleic Acids Res. 33, 223–225 (2005)

22. Tsuda, K.: Support vector classification with asymmetric kernel function. Pros.
ESANN, 183–188 (1999)

23. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001)
Software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm

24. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning tools and Tech-
niques with JAVA implementations. Morgan Kaufman, Seattle, Washington (1999)

25. Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups: Theory
of Positive Definite and Related Functions. Springer, Heidelberg (1984)

26. Kertesz-Farkas, A., Dhir, S., Sonego, P., Pacurar, M., Netoteia, S., Nijveen, H.,
Leunissen, J., Kocsor, A., Pongor, S.: A comparison of random and supervised
cross-validation strategies and benchmark datasets for protein classification (sub-
mitted for publication 2007)

http://www.csie.ntu.edu.tw/~cjlin/libsvm


Equivalence Learning in Protein Classification 837

27. Sonego, P., Pacurar, M., Dhir, D., Kertész-Farkas, A., Kocsor, A., Gáspári, Z.,
Leunissen, J.A.M., Pongor, S.: A Protein Classification Benchmark collection for
Machine Learning. Nucleid Acids Research

28. Henikoff, S., Henikoff, J.G., Pietrokovski, S.: Blocks+: a non-redundant database
of protein alignment blocks derived from multiple compilations. Bioin-formatics 15,
471–479 (1999)

29. Gribskov, M., Robinson, N.L.: Use of Receiver Operating Characteristic (ROC)
analysis to evaluate sequence matching. Comput. Chem. 20, 25–33 (1996)

30. Johns, K.W., Williams, D.A.: Acquired equivalence learning with antecedent and
consequent unconditioned stimuli. J. Exp. Psychol. Anim. Behav. Process 24m,
3–14 (1998)


	Introduction
	Methods
	Vectorization Step
	Classifier Algorithms
	Learned Kernel Functions

	Experiments
	Classification Results Via Learned Similarity Functions

	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


