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Abstract

Identification of problematic protein classes (domain types, protein families) that are difficult to predict from sequence is a key issue in genome
annotation. ROC (Receiver Operating Characteristic) analysis is routinely used for the evaluation of protein similarities, however its results — the
area under curve (AUC) values — are differentially biased for the various protein classes that are highly different in size. We show the bias can be
compensated for by adjusting the length of the top list in a class-dependent fashion, so that the number of negatives within the top list will be equal
to (or proportional with) the size of the positive class. Using this balanced protocol the problematic classes can be identified by their AUC values,
or by a scatter diagram in which the AUC values are plotted against positive/negative ratio of the top list. The use of likelihood-ratio scoring

(Kajan et al, Bioinformatics, 22, 2865-2869, 2007) the bias caused by class imbalance can be further decreased.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Classification of protein sequences is a fundamental exercise
in genome annotation so assessing and comparing the efficiency
of sequence or structure similarity measures is a crucial task.
The method of current choice is ROC (Receiver Operating
Characteristic) analysis that evaluates the ranking ability of a
similarity measure [1,2]. Briefly, the members of a database are
ranked according to their similarity to a query using a similarity
score (such as calculated by BLAST [3], Smith and Waterman
[4], etc.), and a similarity score is considered efficient, if the
proteins belonging to the query’s known class (true positives)

Abbreviations: ROC, Receiver Operating Characteristics; AUC, area under
curve, the integral of the ROC curve; BLAST, basic local alignment search tool
program of Altschul et al.; SCOP, Structural Classification of Proteins, protein
domain 3D database of Murzin et al.
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are on the top of the list. The analysis is carried out by preparing
a sensitivity vs. specificity plot, whose integral value, AUC
(area under curve) is 1.00 if the true positives are all on the top
of the list, and will tend to 0.5 if the ranking is random [1].

In the practice of bioinformatics there are two main variants
of this method (Fig. 1). In the element-wise scenario, originally
suggested by Gribskov and Robinson [5], one prepares a
separate ranked list for all the queries, which will yield one
AUC value for each query. The group-wise scenario can be
applied if the database is a priori divided into distinct classes,
such as domain types [6,7]. Here we prepare one single ranking
for a protein group, in which we rank the members of the test set
with respect to their maximal similarity to the positive train
group. Then we calculate a single AUC for the given group.

If we wish to calculate a cumulative value for an entire
database using either scenario, the usual method is to calculate
the arithmetic average of the individual AUC values, what is
equivalent to constructing a cumulative AUC plot (such as
shown in Fig. 4 below) and calculating its integral value [6,7].
In this representation higher curves indicate better performance.

ROC analysis presupposes the existence of two classes, of
which the query’s known class is the positive while the rest of the
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database is the often much larger negative group, in other terms
the positive/negative ratio (p/n) is often negligibly small. In
order to handle this class-imbalance problem and to get a dataset
of manageable sizes it is customary to cut the top list at some
point, and according to Gribskov and Robinson [5] this can be
done by limiting the top list so as to include n negatives (where n
is usually taken as some plausible number like 10, 50 etc.). These
are the so-called ROCn (e.g. ROC10, ROC50) values that were
originally proposed for the element-wise scenarios but they are
also frequently used in the group-wise scenarios.

ROC analysis is considered reliable because it includes both
specificity and sensitivity, so a method with a high AUC value
can be expected to be a robust in a variety of conditions. While
we generally agree with this view, we noticed that the ROCn
values can be differentially biased in various classes within a
database. The result of this differential bias is that one cannot
directly compare AUC values between different classes,
although AUC values obtained on the same class with different
methods are comparable. This is a major problem, since
discovery of new protein or gene groups is perhaps the most
important tasks in genome research, so there is a need to assess
and compare, without class-imbalance artifacts, the predictabil-
ity of protein groups. Doubtlessly, this assessment could be
done by developing and fine-tuning classifier algorithms for
each of the new candidate groups, which is, on the other hand
too time consuming in view of the amounts of data to be
analyzed. Our motivation was to use ROC analysis directly for
the purpose. As the positive/negative ratio within a top list is
known to influence the AUC values, we were looking for
methods where this ratio can be controlled and monitored.

Here we propose a simple method wherein the number of the
selected negatives included into the analysis is equal to (or
proportional with) the number of the positive sample. This
balanced ROC analysis provides less biased AUC values, which
can be used to identify difficult groups within a database.

2. Materials and methods
2.1. Datasets and algorithm

The SCOP95 dataset used for modeling consisted of protein
domain sequences taken from the SCOP database v.1.69, filtered
for 95% identity [8]. For the comparison we used the Smith—
Waterman algorithm [4] as coded in the EMBOSS program
package [9] and applied predefined classification tasks for
superfamily prediction. The classification tasks and the Smith—
Waterman data were taken from record PBS0001 of the Protein
Classification Benchmark collection [10], so the positive set
contained members of s superfamily, one family being the +test set
and the rest of the families were the +training set. We performed
the evaluation using either the element-wise or the group-wise
scenario. In each case we used supervised subdivision [12].

2.2. ROC calculation

Calculation of AUC was carried out as described [6,7,10,11],
using top lists including a given number of negative samples.
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Fig. 1. Scheme of the two scenarios for calculating ROC. In the element-wise
scenario (A), each query is compared to a dataset of + and — train examples. A
ROC curve is prepared for each query and the integrals (AUC values) are
combined to give the final result for a group of queries. In the group-wise
scenario (B) the queries of the test set are ranked according to their similarity to
the train group, and the ROC AUC value calculated from this ranking will be
used to characterize the group.

The number of negatives (7)) was expressed in multiples of the
positive samples (p) participating in the restricted ranking. This
normalized number N, is thus related to the positive/negative
ratio, so at N;=1.0, p/n < 1.0. p/n be lower than 1.0 for difficult
classes, since in these cases there are positive samples that do
not show up in the top lists, especially when less sensitive
methods comparison methods are used.

For the balanced ROC (BaROC) protocol we selected the top
list in such a way that it contained as many negative samples as
the number of samples in the entire positive set. This
corresponds to N,=1.0, so the p/n values are between zero
and 1.0. It is equally possible to use a value of N,=2.0 is i.e. to
use twice as many negatives as there are positives, in that case
the p/n values will be between zero and 0.5. One can easily
show that for any N,, p/n <1/N.,.

We mention that the BaROC protocol — same as the ROCn
principle suggested by Gribskov and Robinson [5]— is based
on toplist truncation, so the AUC value expected for random
ranking is lower than 0.5.

2.3. Likelihood-ratio scoring

In the practice of protein sequence classification the input
variable of ROC analysis is a sequence similarity score, such as
a BLAST or Smith—Waterman score. Recently it has been
proposed that a simple likelihood-ratio approximant, LR, is a
more efficient ranking indicator [12]. The LR score of a query is
calculated as

+
LR = % (1)
max
where S and Sy are the top similarities obtained between
the query and members of the positive and negative groups,
respectively. In contrast to a simple similarity score Spax, LR
also contains information on the negative class. A similar
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Table 1

Dependence of the AUC value n the size of the negative set

No. of negatives in the top list AUC p/n

10 0.900 0.100000
50 0.500 0.040000

Full negative (5990) 0.833 0.000835

Globin-like proteins, a.1.1. in SCOP95. See text for details.

scoring measure, an approximant of the posterior probability p
is used by the IBk program of the WEKA package [13].
S+

P= e (2)

max J’» SI;&X

Since the likelihood ratio is defined as p/(1 —p), it is easy to
show that these two indices have in fact the same meaning and
thus lead to identical ranking. In our comparisons we used the
LR score, in addition to simple scoring that uses only Spa.. We
point out that LR scoring is meaningful only in the group-wise
scenario, the ranking of the element-wise scenario does not
change upon the transformation to LR, so the ranking remains
the same as with simple scoring.

3. Results

The heterogeneity of protein groups is a fundamental
problem of protein classification. Protein groups vary in terms
of the number of group-members, the length and variability of
the sequences, the separation from the nearest non-member
sequences etc. So we can expect that using a top list of a given
length may influence the ROCn value.

Let’s take the globin superfamily a.1.1 of the SCOP95 data
set as an example, and use the Smith—Waterman algorithm to
compare sequence similarities. This superfamily has 103
members, and we will define a classification task wherein
family a.1.1.1 (Globine-like, 5 members) will be the test group.
We will calculate AUC in a group-wise scenario, using 10, 50
negatives (which corresponds to the generally used ROC10 and
ROCS50 scenarios), or the full dataset in the analysis. The results
in Table 1 indeed show that the values are strongly dependent
on the number of negatives taken into the consideration.

The phenomenon is shown graphically for the entire SCOP95
dataset in which the values represent the average of 246
classification tasks (Fig. 2). In this case we calculated ROC
AUC in three different ways, i.e. using the element-wise scenario,
the group-wise scenario with and without likelihood-ratio scoring.
The values are plotted against the size of the negative set expressed
in multiples of the positive set. This was carried out by preparing
the ranked list in the usual way and truncating it from the top when
the necessary number of negatives was reached. It is conspicuous
that the AUC values calculated by any of the three methods show a
steeply increasing tendency if the number of negatives is below
the size of the positive group. The methods using simple scoring
(i.e. when the Smith—Waterman score was used for ROC analysis
either in the group-wise or in the element-wise scenario) continue
an increasing tendency above this threshold, but apparent that the
curve of likelihood-scoring (in a group-wise scenario) does not, its
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Fig. 2. Dependence of the ROC AUC values on the size of the negative set.
Average AUCs were calculated for all the 246 classifications tasks within the
SCOP95 dataset. The error bars indicate the average standard deviations. The
curves represent different methods of calculation as indicated in the inset and
described in Materials and methods. Note that the group-wise scenario with
likelihood-ratio scoring gives values that are independent of the size of the
negative set while the results of the others show an increasing tendency and have
higher standard deviation values (indicated by the error bars).

value is seemingly independent of the number of negative samples
in the top list. In addition, the latter method has substantially lower
standard deviation values than the other two methods. In principle,
the comparison of the scoring methods should not depend on the
dataset, and in fact we see that the ranking order of the methods is
consistently the same as we reach values of N.>1. On the other
hand, the curves are crossing each other below N,=1.00, which
shows that the comparison of the methods is not consistent if
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Fig. 3. Cumulative AUC curves for various calculation/scenarios. The calculations
were done on the super families of the SCOP95 database (PCB0001, see Materials
and methods), using various strategies for top list-restriction. The cumulative AUC
curves plot the number of queries or groups (Y-axis) that exceed the AUC value
indicated on the X axis. For uniformity, we normalized the Y values to 1.00 by
dividing them by the total number of queries or groups, respectively. AUC indicates
calculation on the entire dataset, AUC50 and AUC10 indicate calculations based
on truncated toplists as suggested by Gribskov and Robinson [5], B-AUC indicates
calculation according to the present BAROC protocol.In this representation the
curves running higher indicate a better performance, which means that AUC on the
full dataset gives higher scores than all the other methods, and the balanced ROC
gives the lowest scores.
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AUC

AUC

Fig. 4. Dependence of AUC values on the positive/negative ratio. The AUC
values were calculated for the 246 groups of the SCOP95 database using a
group-wise scenario with supervised cross validation as described [6,7,10,11].
The top panel shows the calculation for AUCS0, in which the top list of each
group contains exactly 50 negative samples. The lower panel shows the
balanced ROC, in which the top list contains as many negatives as there are
positives in the calculation. (N,=1.00). The data points are more spread.

shorter top lists are used. Taken together, the results confirm the
dependence of the values on the number of the negative samples.
And since fixing the same size of the negative set for all of the
classes will place the different classes at different points within this
curve, we can appreciate that there will be a differential bias within
the various groups.

One of the underlying reasons is that the top lists of a given
length may contain a strongly varying number of positives and
negatives, so the positive/negative ratio changes as we consider
longer and longer top lists. On the other hand, selecting a
number of negatives that is proportional to the size of the
positive group will adjust the positive/negative ratio to a level
roughly balanced with respect to the group size. With this
strategy, the experimenter can be more certain that the AUC
differences observed between classes are not class-imbalance
artifacts but indicators of quality differences between classes.
We propose to use a number of negatives that is equal to or
double of the number of the positives participating in the

ranking. Fig. 3 shows that the balanced ROC analysis calculated
in this manner is a more stringent test than AUC50 or AUCCI10,
at least for the SCOP95 dataset in which there are many
relatively small groups.

The balancing effect is clearly shown in Fig. 4 where we
plotted the AUC value for 246 groups against the p/n ratio. In the
case of ROCS50, the p/n ratio is way below one (A, top). In the
case of the balanced ROC (B, bottom), p/n gets near one for a
number of the groups, but it can be lower in the case of distant
similarities since in those cases not all the positives will show up
in the top list. In the present dataset we see many such cases since
the SCOP dataset is difficult for a sequence comparison method
such as Smith Waterman. Simply put, regions in the BAROC
scatter diagram allows one to distinguish various classes within a
database. High AUC, high p/n ratio indicates tight groups, with
high similarities between the members and well separated from
the rest. High AUC low p/n is characteristic of less well-
separated or less tight groups in which the within-group
similarity is not sufficiently strong. Finally, low AUC, low p/n
ratio is indicative of problem groups that are difficult to predict.

4. Discussion

Generally speaking, for statistical evaluation such as a ROC
AUC calculation, it is recommended to have the same number of
positive and negative samples [1,2]. This condition is never met
in bioinformatics databases, we have much less positives than
negatives. A correct solution would be to randomly select equal
numbers from the two classes and to construct many classifiers
for all cases, which is clearly too time consuming given the
number of classes and data. Instead, bioinformaticians resort to
the truncation of the top lists, which — as we saw in Table 1— does
not necessarily helps one to decide whether or not a low AUC
value is indicative of a problematic object class or it is a class-
imbalance artifact. As a way out, we propose the balanced ROC
scenario which adjusts the number of negatives to the level of the
size of the positive set. In this manner, classes, where the
positives are within the “balanced” top list, will have a high p/n
value as well as a high AUC. These classes are the easy cases for
which the comparison measure (in our case the Smith—
Waterman similarity score) works efficiently. In the case of
difficult classes, we will have fewer positives in the top list. So
we can detect the problem classes, using a scatter plot like the
one shown in Fig. 4, where they will be in the region of low AUC
and low p/n values. In this manner we can make use of the
reliability of AUC calculation without having to construct a
classifier for all the groups. Likelihood-ratio scoring (Eq. (1))
provides a further tool for getting rid of the class-imbalance bias,
and it can be efficiently used in the BAROC scenario.

Finally we mention that the use of the method was illustrated
here on 246 sequence classification tasks taken from the SCOP
database. We tested the method on the other sequence and 3D
classification tasks included in the Protein Classification
Benchmark Collection [10], with identical results (data not
shown) which gives us hope that this protocol will be applicable
to other classification methods that rank the objects according to
a variable that characterizes class-membership.
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5. Simplified description of the method

We propose a ROC analysis protocol that makes it possible
to single out classes in a database that are likely to be difficult to
predict. The method, termed Balanced ROC (BAROC), consists
of calculating an AUC value for a ranked top list which
truncated so as to contain as many (or twice as many) negative
objects as there are positive objects in the entire analysis. In this
manner each class will be analyzed with a top list whose length
depends on the size of the class. The difficult groups can then be
identified by their low AUC values and/or their low positive/
negative ratio within the top list. The identification is helped by
a scatter plot of AUC vs. positive/negative ratio, as well as by
the use of a likelihood-ratio scoring scheme (Eq. (1)), that can
be efficiently used in the BAROC protocol instead of the simple
similarity scores.
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