
Tree-Based Algorithms for Protein
Classification

Róbert Busa-Fekete1, András Kocsor1,2,3 and Sándor Pongor4,5

1 Research Group on Artificial Intelligence of the Hungarian Academy of Sciences
and University of Szeged, Aradi vértanúk tere 1., H-6720 Szeged, Hungary
E-mail: {busarobi, kocsor}@inf.u-szeged.hu

2 Research Group on Artificial Intelligence NPC., Petőfi S. Sgt. 43., H-6725
Szeged, Hungary

3 Applied Intelligence Laboratory Ltd., Petőfi S. Sgt. 43., H-6725 Szeged, Hungary
4 Bioinformatics Group, International Centre for Genetic Engineering and

Biotechnology, Padriciano 99, I-34012 Trieste, Italy
E-mail: pongor@icgeb.org

5 Bioinformatics Group, Biological Research Centre, Hungarian Academy of
Sciences, Temesvári krt. 62, H-6701 Szeged, Hungary

Summary. The problem of protein sequence classification is one of the crucial
tasks in the interpretation of genomic data. Many high-throughput systems were
developed with the aim of categorizing the proteins based only on their sequences.
However, modelling how the proteins have evolved can also help in the classification
task of sequenced data. Hence the phylogenetic analysis has gained importance in
the field of protein classification. This approach does not just rely on the similarities
in sequences, but it also considers the phylogenetic information stored in a tree (e.g.
in a phylogenetic tree). Eisen used firstly phylogenetic trees in protein classification,
and his work has revived the discipline of phylogenomics. In this chapter we provide
an overview about this area, and in addition we propose two algorithms that well
suited to this scope. We present two algorithms that are based on a weighted binary
tree representation of protein similarity data. TreeInsert assigns the class label to
the query by determining a minimum cost necessary to insert the query in the
(precomputed) trees representing the various classes. Then TreNN assigns the label
to the query based on an analysis of the query’s neighborhood within a binary tree
containing members of the known classes. The algorithms were tested in combination
with various sequence similarity scoring methods (BLAST, Smith-Waterman, Local
Alignment Kernel as well as various compression-based distance scores) using a
large number of classification tasks representing various degrees of difficulty. At the
expense of a small computational overhead, both TreeNN and TreeInsert exceed the
performance of simple similarity search (1NN) as determined by ROC analysis, at
the expense of a modest computational overhead. Combined with a fast tree-building
method, both algorithms are suitable for web-based server applications.

Key words: Proteomics, Protein classification, Phylogenetics, Phylogenomics



2 Busa-Fekete et. al.

1 Introduction

The categorization of biological objects is one of the fundamental and tradi-
tional tasks of the life sciences. For instance, the categorization of organisms
into a hierarchical ”Tree of life” leads to a complex model that summarizes
not just the taxonomic relationships between the species, but also the pu-
tative time-course of evolution as we understand it today. With the advent
of molecular biology in the 1970’s, the categorization of genes and proteins
itself became an important subject of research. Sequences of individual pro-
teins can for instance be compared using string distance measures, and one
can build trees that closely resemble the hypothetical ”Tree of life”. The cat-
egorization of protein structures, on the other hand, began from a different
perspective: protein structures reveal a few fundamental molecular arrange-
ments (like alpha-helices and beta-sheets) that can combine in a variety of
ways and give rise to characteristic molecular shapes. Finally, the recent ad-
vent of genomics research - the wholesale analysis of the gene and protein
repertoire of a species - led to yet another perspective with an emphasis on
biological function. According to this approach, the known genes/proteins are
categorized into a priori determined, empirical categories that reflect our cur-
rent knowledge on the cellular and biochemical functions. As proteins carry
many, perhaps most of the known biological functions, they play a prominent
role in the functional analysis of genomes.

The methods of protein classification fall into three broad categories: i)
Methods based on pairwise comparison, i.e. ones that work by comparing an
unknown object (protein sequence or structure) with members of an a priori
classified database of protein objects. The results are ranked according to the
similarities and the strongest similarities are evaluated in terms of biological or
statistical significance, after which a query is assigned to the class of the most
similar object. ii) Methods based on consensus (or aggregate) descriptions, i.e.
ones that are used to analyze distant sequence similarities that cannot readily
be determined based on a simple similarity analysis. Here we first prepare a
consensus description for all the classes of a protein sequence database, then
we compare the unknown query with each of the consensus descriptions. As
with the previous methods, the strongest similarities are evaluated and used
to assign the protein to the given class. There are various methods for prepar-
ing consensus descriptions, including regular expressions, frequency matrices
and Hidden Markov Models. The above methods are described in textbooks
and are periodically reviewed. iii) A more recent type of protein classification
methods attempts to use an external source of knowledge in order to increase
the classification sensitivity. The external source of knowledge is the phylo-
genetic classification of an organism, i.e. the knowledge that is accumulated
in the fields of taxonomy and molecular phylogeny. This approach is called
phylogenomics (for a recent review see [1]) and is closely linked to the notions
of orthologs (proteins that share both ancestry and function) and paralogs
(proteins that share a common ancestry but carry different functions). The



Tree-Based Algorithms for Protein Classification 3

practical goal of phylogenomics is to reveal the true orthologous relationships
and use them in the process of classification. Like ii), phylogenomic methods
are used for distant similarities that cannot be decided by simple comparisons
like those mentioned in i).

The aim of the present chapter is to describe two protein classification
algorithms that make use of tree structures. The chief difficulties of protein
classification arise from the fact that the databases are large, noisy, heteroge-
neous and redundant; that the classes themselves are very different in terms
of most of their characteristics; that the assignments are often uncertain. For
these reasons there is a constant need for better and faster algorithms that
can cope with the growing datasets, and tree-based approaches are promising
in this respect [2]. Even though trees are often used in molecular phylogenies
and phylogenomics, the motivation of our work is quite different since we are
not trying to reveal or to use the taxonomic relationships between species or
proteins. We employ trees - especially weighted binary trees - as a simple and
computationally inexpensive formalism to capture the hidden structure of the
data and to use it for protein classification .

The rest of this chapter is structured as follows. Section 2 provides a brief
overview of related work, with a strong focus on the protein comparison and
tree-building methods used here. Afterwards Sections 3 and 4 respectively
describe the two algorithms called TreeNN and TreeInsert. TreeNN (Section
3) is based on the concept of a distance that can be defined between leaves
of a weighted binary tree. TreeNN is a pairwise comparison type algorithm
(see i) above), where the distance function incorporates information encoded
in a tree structure. Given a query protein and an a priori classified database,
the algorithm first constructs a common tree that includes the members of
the database and the query protein. In the subsequent step the algorithm at-
tempts to assign labels to an unknown protein using the known class labels
found in its neighborhood within the tree. A weighting scheme is applied, and
the class label with the highest weight is assigned to the query. TreeInsert
(Section 4) is based on the concept of tree insertion cost, this being a nu-
merical value characterizing the insertion of a new leaf at a given point of a
weighted binary tree. The algorithm finds the point with minimum insertion
cost in a tree. TreeInsert uses the tree as a consensus representation so it is
related to the algorithms described above in ii). Given an unknown protein
and protein classes represented by precalculated weighted binary trees, the
query is assigned to the tree into which it can be inserted at the smallest
cost. In the description of both algorithms we first give a conceptual outline
that summarizes the theory as well as its relation to the existing approaches
i-iii. This is followed by the formal description of the algorithm, the principle
of the implementation, and some possible heuristic improvements. Then we
round off the paper with a brief discussion and some conclusions in Section 5.
As for the databases and the classification tasks used for benchmarking the
algorithms, these are described in the Appendix.



4 Busa-Fekete et. al.

2 Related work

The algorithms described in this work belong to the broad area of protein
classification , and have been summarized in several recent reviews and mono-
graphs [3]. In particular, we will employ the tools developed for protein se-
quence comparison that are now routinely used by researchers in various bio-
logical fields. The Smith-Waterman [4] and the Needleman-Wunsch algorithms
[5] are exhaustive sequence comparison algorithms, while BLAST [6] is a fast
heuristic algorithm. All of these programs calculate a similarity score that is
high for similar or identical sequences and zero or below some threshold for
very different sequences. Methods of molecular phylogeny build trees from the
similarity scores obtained from the pairwise comparison of a set of protein se-
quences. The current methods of tree building are summarized in the splendid
textbook by J. Felsenstein[7]. One class of tree/building methods the so-called
distance based methods are particularly relevant to our work since we use one
of the simplest method, namely Neighbour-Joining (NJ) [8], to generate trees
from the data.

Protein classification supported by phylogenetic information is sometimes
termed phylogenomics [1, 9]. The term covers an eclectic set of tools that
combine phylogenetic trees and external data-sources in order to increase the
sensitivity of protein classification [1]. Jonathan Eisen’s review provides a
conceptual framework for combining functional and phylogenetic information
and describes a number of cases where functions cannot be predicted using
sequence similarity alone. Most of the work summarized by Eisen is devoted
to the human evaluation of small datasets by hand. The first automated anno-
tation algorithm was introduced by Zmasek and Eddy [10] who used explicit
phylogenetic inference in conjunction with real-life databases. Their method
applies the gene tree and the species tree in a parallel fashion, and it can infer
speciation and duplication events by comparing the two distinct trees. The
worst case running time of this methods is O

(
n2

)
, and the authors used the

COG dataset [11] to show that their method is applicable for automated gene
annotation.

Not long ago Lazareva-Ulitsky et. al. employed an explicit measure to
describe the compatibility of a phylogenetic tree and a functional classifica-
tion [12]. Given a phylogenetic tree overlaid with labels of functional classes,
the authors analyzed the subtrees that contain all members of a given class. A
subtree is called perfect if its leaves all belong to the one functional class and
an ideal phylogenetic tree is made up of just perfect subtrees. In the absence
of such a perfect subdivision, one can establish an optimal division i.e. one
can find subtrees that contain the least ”false” labels. The authors defined a
so-called tree measure that characterizes the fit between the phylogenetic tree
and the functional classification, and then used it to develop a tree-building
algorithm based on agglomerative clustering. For a comprehensive review on
protein classification see [1].



Tree-Based Algorithms for Protein Classification 5

3 TreeNN : Protein classification via neighborhood
evaluation within weighted binary trees

3.1 Conceptual outline

Given a database of a priori classified proteins that are compared to each other
in terms of a similarity/dissimilarity measure6, and a query protein that is
compared to the same database in terms of the same similarity/dissimilarity
measure, one can build a weighted, binary tree that will contain proteins in
each leaf. If we now assign the known class labels to the proteins, all leaves
except the unknown query will be labelled, as schematically shown in Figure 1.

Fig. 1. A weighted tree of proteins overlayed with class labels.

First let us denote the length of the unique path between two leaves Li and
Lj by p (Li, Lj). Here p (Li, Lj) is an integer representing the number of edges
along the path between Li and Lj . We can define the closest neighbourhood
K (L) of a leaf L as the set of leaves for which there is no Lj leaf such that
p (L,Lj) < p (L, Li). For instance the closest neighbours of q in Figure 1 are
both members of class 2 and are three steps apart from q. These leaves are
parts of the 3-neighbourhood of q (i.e. the set of leaves for which the path
between q and them at the most 3). If the tree is a weighted binary tree we
can define the leaf distance l (Li, Lj) between two leaves Li and Lj as the
sum of the branch-weights along the unique path between Li and Lj . For
instance the leaf distance of q from one of its closest neighbors q in the tree
is b1 + b2 + b3. Finally let us suppose that we know the value of a pairwise
similarity measure (such as a BLAST score) between any pair of leaves Li and
Lj , whose value will be denoted by s (Li, Lj), and that we build a weighted
binary tree using the s (Li, Lj) values. Within this tree we can also calculate
the value of the leaf distance l (Li, Lj).

6 ”Similarity measures” and ”dissimilarity measures” are inversely related: a mono-
tone decreasing transformation of a similarity measure leads to a dissimilarity
measure.



6 Busa-Fekete et. al.

The TreeNN algorithm is a weighted nearest neighbour method that ap-
plies as weights a similarity/dissimilarity measure between the proteins con-
stituting the tree and is calculated within the closest neighbourhood of the
query within the tree. More precisely, let us assume that we have leaves from m
different classes and an indicator function I : {L1, ..., Ln} → {1, ..., m} that as-
signs the class labels to the proteins represented by the leaves of the tree. The
aggregate similarity measure R (j, Lq) of each of the m classes (j ∈ {1, ..., m})
will be an aggregate of the similarity measures or leaf distances obtained be-
tween the query on one hand and the members of the class within the closest
neighbourhood on the other, calculated via an aggregation operator Θ (such
as the sum, product or maximum):

R (j, Lq) = Θ
Li∈K(L)∧I(Li)=j

s (Li, Lq) (1)

or

R̃ (j, Lq) = Θ
Li∈K(L)∧I(Li)=j

l (Li, Lq) (2)

The first aggregated value (Eq. (1) ) for classes is calculated using the orig-
inal similarity values. This implementation just utilized the topology of the
phylogenetic tree, while the second implementation (Eq. (2) ) also takes into
account the edge lengths.

We calculate aggregate measures for each of the classes and the class with
the highest weight will be assigned to the query Lq. This analysis is similar to
that for the widely used kNN principle, the difference being that we restrict
the analysis to the tree neighbourhood of the query (and not simply to the k
most similar proteins) and we can use a leaf distance, as shown in Eq. (1). As
for as the aggregation operator, we could for instance use summation, but we
can also use the average operator or the maximum value operator.

In order to increase the influence of the tree structure on the ranking,
we introduce a further variant of TreeNN, in which the similarity measures
s (Li, Lj) are divided by the path lengths between Li and Lj . In this manner
the weighted aggregate similarity measure becomes

W (j, Lq) = Θ
Li∈K(L)∧I(Li)=j

(
s (Li, Lq)
p (Li, Lq)

)
(3)

or

W̃ (j, Lq) = Θ
Li∈K(L)∧I(Li)=j

(
l (Li, Lq)
p (Li, Lq)

)
(4)



Tree-Based Algorithms for Protein Classification 7

This formula ensures that the leaves farther away within the tree from Lq will
have a smaller influence on the classification than the nearer neighbours.

3.2 Description of the algorithm

Input:

- A distance matrix containing the all vs. all comparison of a dataset con-
sisting of a query protein and of an a priori classified set of data.

Output:

- A class label assigned to the query protein

First a weighted binary tree is built from the data. The leaves of this tree
are proteins and we select the set of closest tree-neighbours (minimum number
of edges from the query). Then we apply a classification rule that might be
one of the following:

TreeNN : Assigns to the query the class label with the highest
aggregate similarity calculated according to Eq. (1) or (2).

Weighted Assigns to the query the class label with the highest
TreeNN: aggregate similarity calculated according to Eq. (3) or (4).

The time complexity of the algorithm mainly depends on the tree-building
part. For example the Neighbour-Joining method has an O

(
n3

)
time com-

plexity. We have to build up a tree with n+1 leaves as each protein will be
classified, hence this algorithm has an O

(
tn3

)
time complexity overall where

t denotes the cardinality of the test set. Finding the closest tree-neighbours
for a leaf can be carried out in linear time, hence it does not cause any extra
computational burden.

Use in classification. The algorithm can be directly used both in two-class
and multi-class classification. The size of the database influences both the
time requirement of the similarity search and that of the tree-building. The
latter is especially important since the time-complexity of tree building is
O

(
n3

)
. We can substantially speed up the computation if we include into the

tree just the first r similarity/dissimilarity neighbours of the query (e.g. the
first 50 BLAST neighbours). On the other hand class imbalance can cause
an additional problem since an irrelevant class that has many members can



8 Busa-Fekete et. al.

easily outweigh smaller classes. An apparently efficient balance heuristic is to
build the tree from the members of the first t (t ≤ 10) classes nearest to the
query, where each class is represented by a maximum of r (r ≤ 4) members.

3.3 Implementation

A computer program was implemented in MATLAB that uses the NJ algo-
rithm as encoded in the Bioinformatics Toolbox package [13]. The detailed
calculation has four distinct steps:

1. An all vs. all distance matrix is calculated from the members of an a priori
classified database using a given similarity/dissimilarity score (BLAST,
Smith-Waterman etc) and the results are stored in CVS (Comma Sepa-
rated Values).

2. The query protein is compared with the same database and the same
similarity/dissimilarity score, and the first r sequences are selected for
tree-building, choosing one of the heuristics mentioned above.

3. A small ([r + 1]× [r + 1]) distance matrix is built using the precomputed
data of the database on the one hand and the query vs. database compar-
ison on the other, and a NJ tree is built.

4. The query’s label is assigned using the TreeNN algorithm in the way
described in Section 3.2.

This implementation guarantees that the all vs all comparison of the
database is carried out only once.

3.4 Performance evaluation

The performance of TreeNN was evaluated by ROC analysis and error rate
calculations in the way described in the Appendix (Section 6.4). For compari-
son we also include the results obtained by simple nearest neighbour analysis
(1NN). In each table below the best scores of each set are given in bold, and
the columns with the heading Full concern the performances of TreeNN with-
out a heuristic (i.e. we considered all elements of the training set). Here we
apply the TreeNN methods for a two class problem, thus the parameter t is
always equal to 2. For aggregation operators we tried the sum, the average and
the maximum operators (but the results are not shown here), and the latter
(more precisely, maximum for similarity measures and minimum for distance
measures) had a slightly but consistently superior performance, so we used
this operator to generate the data shown below. For the calculation of the
class weights we applied the scoring scheme that is based on the similarity
measures given in Eq. (1) for TreeNN and Eq. (3) for Weighted TreeNN. Ta-
bles 1 and Table 2 show the TreeNN results for ROC analysis and error rate
calculations, respectively. In the next two tables (Table 3 and 4) we show the
performance of the Weighted TreeNN using the same settings as that used for



Tree-Based Algorithms for Protein Classification 9

TreeNN in Tables 1 and 2. The results, along with the time requirements (wall
clock times) are summarized in Tables 5. The time requirements of Weighted
TreeNN is quite similar to that of TreeNN because the two differ only in the
calculation of class aggregate values (cf. Eqs. (3) and (4)).

Table 1. ROC values of TreeNN with and without a heuristic on the COG and
3PGK datasets.

1NN TreeNN
Full r = 3 r = 10

COG

BLAST 0.8251 0.8381 0.8200 0.7226
Smith-Waterman 0.8285 0.8369 0.8438 0.7820
LAK 0.8249 0.8316 0.8498 0.7813
LZW 0.8155 0.7807 0.7750 0.7498
PPMZ 0.7757 0.8162 0.8162 0.7709

3PGK

BLAST 0.8978 0.9580 0.9699 0.9574
Smith-Waterman 0.8974 0.9582 0.9716 0.9587
LAK 0.8951 0.9418 0.9688 0.9641
LZW 0.8195 0.8186 0.9040 0.8875
PPMZ 0.8551 0.9481 0.9556 0.7244

Table 2. ROC values of Weighted TreeNN with and without a heuristic on the
COG and 3PGK datasets.

1NN TreeNN
Full r = 3 r = 10

COG

BLAST 0.8251 0.8454 0.8206 0.8016
Smith-Waterman 0.8285 0.8474 0.8492 0.8098
LAK 0.8249 0.8417 0.8540 0.8133
LZW 0.8195 0.9356 0.9040 0.9228
PPMZ 0.8551 0.9797 0.9673 0.8367

3PGK

BLAST 0.8978 0.9760 0.9589 0.9579
Smith-Waterman 0.8974 0.9761 0.9547 0.9510
LAK 0.8951 0.9612 0.9719 0.9354
LZW 0.8195 0.7365 0.7412 0.8183
PPMZ 0.8551 0.8140 0.8018 0.7767

The above results reveal a few general trends. First, TreeNN and its
weighted version outperforms the 1NN classification in terms of the error



10 Busa-Fekete et. al.

Table 3. Error rates of TreeNN with and without a heuristic on the COG and
3PGK datasets.

1NN TreeNN
Full r = 3 r = 10

COG

BLAST 14.7516 10.3746 11.6270 15.1469
Smith-Waterman 13.4940 10.5381 9.9996 13.0470
LAK 13.3817 10.8644 9.7976 12.3784
LZW 16.7301 13.2106 13.9285 14.4467
PPMZ 15.0174 11.6331 11.9598 13.2246

3PGK

BLAST 42.1046 35.4026 32.2360 35.8291
Smith-Waterman 42.1046 35.6582 32.2360 35.5694
LAK 42.0856 33.4081 32.1928 34.0542
LZW 36.5293 35.1731 33.8335 30.4403
PPMZ 34.6671 37.2146 32.1706 37.4445

Table 4. Error rates of the Weighted TreeNN with and without a heuristic on the
COG and 3PGK datasets.

1NN TreeNN
Full r = 3 r = 10

COG

BLAST 14.7516 10.3746 11.6270 15.1469
Smith-Waterman 13.4940 10.5381 9.9996 13.0470
LAK 13.3817 10.8644 9.7976 12.3784
LZW 16.7301 13.2106 13.9285 14.4467
PPMZ 15.0174 11.6331 11.9598 13.2246

3PGK

BLAST 42.1046 35.4026 32.2360 35.8291
Smith-Waterman 42.1046 35.6582 32.2360 35.5694
LAK 42.0856 33.4081 32.1928 34.0542
LZW 36.5293 35.1731 33.8335 30.4403
PPMZ 34.6671 37.2146 32.1706 37.4445

rate. We should mention here that this improvement in error rate is apparent
even when we use a heuristic. As for AUC, the results on the COG database
are comparable with those of 1NN, both with and without a heuristic. More-
over they are noticeably better than 1NN on the 3PGK dataset. The fact
that the precision improves while the time requirements are comparable with
that of the very fast 1NN algorithm is a good sign and confirmation that our
approach is a promising one (Table 5).

We calculated the time requirements for the methods we employed in a
real life scenario. We first assumed that we had an a prior classified dataset
containing 10000 elements. Applying the 1NN we simply needed to find the



Tree-Based Algorithms for Protein Classification 11

Table 5. Time requirements for the TreeNN method on the COG dataset in seconds.

Elapsed time(in second)/Method 1NN TreeNN(r=100)

Preprocessing BLAST - -

Other - 15.531

Evaluation BLAST 0.223 0.223

Evaluation Other - 0.109

most similar protein in this dataset to the query protein, and the class label of
this was assigned to the query protein. This approach did not need additional
preprocessing step, so these process time requirements were just equal to the
calculation of the similarity measure between the query and the a prior classi-
fied dataset. The TreeNN method however required some additional running
time. This was because after the TreeNN had chosen the r most similar el-
ement from the known dataset (according to the heuristic in Section 3.2) it
built up a phylogenetic tree for these elements. This step suggested some ad-
ditional preprocessing time requirements. In our experiments the parameter
was set to 100. As the experiments showed, applying TreeNN did not bring
about any significant growth in time requirements.

Table 6 lists a comparison of the performance of the TreeNN algorithm
when we used the original similarities/distances of proteins and when we used
the leaf distances just according to Eqn. (2). The results of these tests clearly
show that the performance of the classifiers was only marginally influenced
by the measure (sequence similarity measure vs. leaf distances) we chose in
the implementation of the algorithm.

Table 6. The performance of the TreeNN using leaf distances and the original
similarity measures.

Comparison of the TreeNN TreeNN
Using similarities Using leaf distances

ROC Error Rate ROC Error Rate

BLAST 0.9699 35.4026 0,9509 36,978

Smith-Waterman 0.9582 35.6582 0,9529 36,979



12 Busa-Fekete et. al.

4 TreeInsert : Protein classification via insertion into
weighted binary trees

4.1 Conceptual outline

Given a database of a priori classified proteins, we can build separate weighted
binary trees from the members of each of the classes. A new query protein is
then assigned to the class to which it is nearest in terms of insertion cost (IC).
A query protein will then be assigned to the class whose IC is the smallest.
First we note that insertion of a new leaf into a weighted binary tree is the
”amount of fitting” into the original tree. In this algorithm we consider an
insertion optimal if the query protein is the best suited compared to every
other possible insertion. Second, note that IC can be defined in various ways
using the terminology introduced in Section 3. The insertion of a new leaf Lq

next to leaf Li is depicted in Figure 2.

Fig. 2. The insertion of the new leaf next to Li.

In this example we insert the new element Lq next to the i-th leaf so we
need to divide the edge between Li and its parent into two parts with a novel
inner point p′i. According to Figure 2 we can express the relationship of the
new leaf Lq to the other leaves of the tree in the following way: l (Lj , Lq) =
l (pi, Lj)+y+z if i 6= j. The l (Li, Lq) leaf distance between the ith leaf and Lq

is just equal to x + z. This extension step of the leaf distances means that all
relations in the tree remain the same, and we have only to determine the new
edge lengths x, y and z. The place of p′i on the divided edge and the weights of
the edge that are between Lq and its parent (denoted by x in Figure 2) have
to be determined so that the similarities and the tree-based distances will be
as close as possible. With this line of thinking we can formulate the insertion
task as the solution of the following system of equations:



Tree-Based Algorithms for Protein Classification 13

min
0≤x,y




n∑

j=1

(s (Lj , Lq)− l (Li, Lq))




2

(5)

s.t. x + y = l (pi, Li)

This optimization task determines the value of the three unknown edge
lengths x, y and z, and the constraints ensures that the leaf-distance between
Li and its parent remains unchanged. With this in mind we can define the
insertion cost for a fixed leaf.

Definition 1. Let T be a phylogenetic tree, and let its leaves be L1, L2, ..., Ln.
The leaf insertion cost IC (Lq, Li) of a new leaf Lq next to Li is defined as
the branch length of x found by solving the optimisation task in Eq. (5).

Our goal here is to find the position of the new leaf in T with the lowest leaf
insertion cost. This is why we define the insertion cost of a new leaf for the
whole tree using the Definition 1 in the following way:

Definition 2. Let T be a phylogenetic tree, and its leaves be L1, L2, ..., Ln.
The insertion cost IC (Lq) of a new leaf Lq into T is the minimal leaf insertion
cost for T :

IC (Lq) = min{IC (Lq, L1) , ..., IC (Lq, Ln)} (6)

In preliminary experiments we tried several possible alternative definitions for
the insertion cost IC (data not shown), and finally we chose the branch length
x (Figure 2) as the definition. This value provides a measure of dissimilarity:
it is zero when the insertion point is vicinal to a leaf that is identical with the
query. The IC for a given tree is the smallest value of x found within the tree.

4.2 Description of the algorithm

Input:

- A weighted binary tree built using the similarity/dissimilarity values (such
as a BLAST score) taken between the elements of a protein class.

- A set of comparison values taken between a query protein on the one hand
and the members of the protein class on the other, using the same simi-
larity/dissimilarity value as we used to construct the tree. So for instance,
when the tree was built using BLAST scores, the set of comparison values
were a set of BLAST comparison values.



14 Busa-Fekete et. al.

Output:

- The value of the insertion cost calculated according to Definition 2.

The algorithm will evaluate all insertions that are possible in the tree. An
insertion of a new leaf next to an old one requires the solution of an equation
system that consists of n equations, where n is the number of leaves. This has
a time complexity of O (n). The number of possible insertions for a tree having
n leaves (i.e. we insert next to all leaves) is n. Thus calculating the insertion
for a new element has a time complexity of O

(
n2

)
. One can reduce the time

complexity using a simple empirical consideration: we just assume that the
optimum insertion will occur in the vicinity of the r leaves that are most
similar to the query in terms of the similarity/dissimilarity measure used for
the evaluation. If we use BLAST, we can limit the insertions to the r nearest
BLAST neighbours of the query. This will reduce the time complexity of the
search to O (rn).

Use in classification. If we have a two-class classification problem, we will have
to build a tree both for the positive class and the negative class, and we can
classify the query to the class whose IC is smaller. In practical applications we
often have to classify a query into one of several thousand protein classes, such
as the classes of protein domains or functions. In this case the class with the
smallest IC can be chosen. This is a simple nearest neighbour classification
which can be further refined by adding an IC threshold above which the
similarities shall not be considered. In order to decrease the time complexity,
we can also exclude from the evaluation those classes whose members did not
occur among the r proteins most similar to the query. Protein databases are
known to consist of classes very different in size. As the tree size does not
influence the insertion cost, class imbalance will not represent a problem to
TreeInsert when calculations are performed.

4.3 Implementation

We used the Neighbour-Joining algorithm for tree-building as given in the
MATLAB Bioinformatics Toolbox [13]. In conjunction with the sequence com-
parison methods listed in Section 6.2, the programs were implemented in
MATLAB. The execution of the method consists of 2 distinct steps, namely:

1. The preprocessing of the database into weighted binary trees and storage
of the data in Newick file format [14]. For this step, the members of each
class were compared with each other in an all vs. all fashion, and the
trees were built using the NJ algorithm. For a large database like COG
(51 groups 5332 sequences) the entire procedure takes 5.95 Seconds on a
Pentium IV Computer (3.0 GHz processor).



Tree-Based Algorithms for Protein Classification 15

2. First, the query is compared with the database using a selected similar-
ity/dissimilarity measure and the data are stored in CSV file format. Next,
the query is inserted into a set of class-representation trees, and the class
with the optimal (smallest) IC value is chosen.

4.4 Performance evaluation

Table 7. ROC analysis results (AUC values) for the TreeInsert algorithm on the
COG and 3PGK datasets. Here several different implementations were used.

1NN TreeNN
Full r = 3 r = 10

COG

BLAST 0.8251 0.8741 0.8441 0.8708
Smith-Waterman 0.8285 0.8732 0.8474 0.8640
LAK 0.8249 0.8154 0.8276 0.8734
LZW 0.8155 0.7639 0.8243 0.8316
PPMZ 0.7757 0.8171 0.8535 0.8682

3PGK

BLAST 0.8978 0.9473 0.8984 0.9090
Smith-Waterman 0.8974 0.9472 0.8977 0.9046
LAK 0.8951 0.9414 0.8851 0.9068
LZW 0.8195 0.8801 0.8009 0.8421
PPMZ 0.8551 0.8948 0.8646 0.9123

Table 8. Error rate values for the TreeInsert algorithm on the COG and 3PGK
datasets. As before, several different implementations were used.

1NN TreeNN
Full r = 3 r = 10

COG

BLAST 14.7516 10.6127 17.3419 17.3419
Smith-Waterman 13.4940 13.8218 17.9189 17.9189
LAK 13.3817 11.3340 15.9436 15.9436
LZW 16.7301 13.8962 20.0073 20.0073
PPMZ 15.0174 11.3386 8.3167 8.3167

3PGK

BLAST 42.1046 20.2009 25.4544 35.7754
Smith-Waterman 42.1046 20.3730 24.7976 36.0115
LAK 42.0856 20.2009 25.8242 39.5036
LZW 36.5293 15.7901 37.0648 26.4240
PPMZ 34.6671 14.4753 32.3829 28.9935



16 Busa-Fekete et. al.

The performance of TreeInsert was evaluated via ROC analysis and via
the error rate as described in Section 6.4. For comparison we also include
here the results obtained by simple nearest neighbour analysis (1NN). The
results, along with the time requirements (wall clock times) are summarized
in Table 9. Our classification tasks were the same as those in Section 3.4,
thus the parameter t (number of considered class) was always equal to 2.
The dependence of the performance on the other tuneable parameter r (the
number of elements per class) is shown in Tables 7 and 8.

In most of the test cases TreeInsert visibly outperforms 1NN in terms of
ROC AUC and error rate. What is more, the TreeInsert method achieves the
best results when we consider all the possible insertions, not just those of the
adjacent leaves. This probably means that the insertion cost is not necessarily
correlated with the similarity measure between the proteins.

Table 9. Time requirements of the TreeInsert methods on the COG dataset. Here
n means the number of classes in question.

Elapsed time(in second)/Method 1NN TreeInsert(r=100)

Preprocessing BLAST - 2232.54

Other - 1100

Evaluation BLAST 0.223 0.223

Evaluation Other - 0.029 ∗ n

When we examined the classification process using TreeInsert we found
that we needed to carry out a preprocessing step before we evaluated the
method. This preprocessing step consisted of the building of the phylogenetic
trees for each class in the training dataset. Following the testing scheme we
applied in Section 3.4, we assumed that the training dataset contained 1000
classes, and the classes contained 100 elements on average. Thus this step
caused a significant growth in the running time. But when we investigated
this method from a time perspective we found that this extra computation
cost belonged to the offline time requirements. The evaluation of this method
hardly depended on the number of classes in question because we had to insert
an unknown protein into the phylogenetic trees of the known protein family.
Table 9 describes this dependency, where n here denotes the number of classes.

5 Discussion and conclusions

The problem of protein sequence classification is one of the crucial tasks in the
interpretation of genomic data. Simple nearest neighbour (kNN) classification
based on fast sequence comparison algorithms such as BLAST is efficient in
the majority of the cases, i.e. up to 70 − 80% of the sequences in a newly
sequenced genome can be classified in a reassuring way, based on their high



Tree-Based Algorithms for Protein Classification 17

sequence similarity. A whole arsenal of sophisticated methods has been de-
veloped in order to evaluate the remaining 20 − 30% of sequences that are
often known as ”distant similarities”. The most popular current methods are
”consensus” descriptions (see ii) in the Introduction) that are based about the
multiple alignment of the known sequence classes. A multiple alignment can be
transformed either into a Hidden Markov model or a sequence profile; both
are detailed, structured descriptions that contain sequence position-specific
information on the multiple alignments. A new sequence is then compared
with a library of such descriptions. These methods use some preprocessing
that requires CPU time as well as human intervention. Also the time of the
analysis (evaluation of queries) can be quite substantial, especially when these
are compared to BLAST runs. The golden mean of sequence comparison is
to develop classification methods that are as fast as BLAST but are able to
handle the distant similarities as well.

The rationale behind applying tree-based algorithms is to provide a struc-
tured description that is simple and computationally inexpensive, but still
may allow one to exceed the performance of simple kNN searches. TreeNN
is a kNN type method that first builds a (small) tree from the results of the
similarity search and then performs the classification in the context of this
tree. TreeInsert is a consensus type method that has a preprocessing time
as well as an evaluation time. Both TreeNN and TreeInsert exceed the per-
formance of simple similarity searches and this is quite promising for future
practical applications. We should remark here however that the above com-
parisons were made on very difficult datasets. On the other hand we used
two-class scenarios, whereas the tasks in genome annotation are multiclass
problems. Nevertheless, both TreeNN and TreeInsert can be applied in multi-
class scenarios without extensive modifications so we are confident that they
will be useful in these contexts. According to preliminary results obtained on
the Protein Classification Benchmark collection [15] it also appears that, in
addition to sequence comparison data, both algorithms can be efficiently used
to analyse protein structure classification problems, which suggests that they
might be useful in other fields of classification as well.

6 Appendix: Datasets and methods

6.1 Datasets and classification tasks

In order to characterize of the tree-based classifier algorithms described in this
work we designed classification tasks. A classification task is a subdivision of a
dataset into +train, +test, -train and -test groups. Here we used two datasets.

Dataset A was constructed from evolutionarily related sequences of an
ubiquitous glycolytic enzyme, 3-phosphoglycerate kinase (3PGK, 358 to 505
residues in length). 131 3PGK sequences were selected which represent various
species of the Archaean, Bacterial and Eukaryotic superkingdoms [16]. 10



18 Busa-Fekete et. al.

classification tasks were then defined on this dataset in the following way.
The positive examples were taken from a given superkingdom. One of the
phyla (with at least 5 sequences) was the test set while the remaining phyla
of the kingdom were used as the training set. The negative set contained
members of the other two superkingdoms and were subdivided in such a way
that members of one phylum could be either test or train.

Dataset B is a subset of the COG database of functionally annotated
orthologous sequence clusters [11]. In the COG database, each COG cluster
contains functionally related orthologous sequences belonging to unicellular
organisms, including Archaea, Bacteria and unicellular Eukaryota. Of the over
5665 COGs we selected 117 that contained at least 8 eukaryotic sequences and
16 additional prokaryotic sequences (a total of 17973 sequences). A separate
classification task was defined for each of the 117 selected COG groups. The
positive group contained the Archaean proteins randomly subdivided into
+train and +test groups, while the rest of the COG was randomly subdivided
into -train and -test groups. In a typical classification task the positive group
consisted of 17 to 41 Archaean sequences while the negative group contained
12 to 247 members, both groups being subdivided into equal test and train
groups.

6.2 Sequence comparison algorithms

Version 2.2.4 of the BLAST program [6] had a cutoff score of 25. The Smith-
Waterman algorithm [4] we used was implemented in MATLAB [13], while the
program implementing the local alignment kernel algorithm [23] was obtained
from the authors of the method. Moreover, the BLOSUM 62 matrix [24] was
used in each case.

Compression based distance measures (CBMs) were used in the way de-
fined by Vitnyi et. al. [17]. That is,

CBM (X, Y ) =
C (XY )−min{C (X) , C (Y )}

max{C (X) , C (Y )} (7)

where X and Y are sequences to be compared and C (.) denotes the length of
a compressed string, compressed by a particular compressor C, like the LZW
algorithm or the PPMZ algorithm [18]. In this study the LZW algorithm was
implemented in MATLAB while the PPMZ2 algorithm was downloaded from
Charles Bloom’s homepage (http://www.cbloom.com/src/ppmz.html).

6.3 Distance-based tree building methods

Distance-based or the distance matrix methods of tree-building are fast and
quite suitable for protein function prediction. The general idea behind each
is to calculate a measure of the similarity between each pair of taxons, and
then to find a tree that predicts the observed set of similarities as closely as



Tree-Based Algorithms for Protein Classification 19

possible. In our study we used two popular algorithms, the Unweighted Pair-
Group Method using Arithmetic Averages (UPGMA) [19], and the Neighbour-
Joining (NJ) algorithm [8]. Both algorithms here are based on hierarchical
clustering. UPGMA employs an agglomerative algorithm which assumes that
the evolutionary process can be represented by an ultrametric tree: or, in
other words, that it satisfies the ”molecular clock” assumption. On the other
hand, NJ is based on divisive clustering and produces additive trees. The
time complexity of both methods is O

(
n3

)
. In our experiments we used the

UPGMA and the NJ algorithms as implemented in the Phylip package [20].

6.4 Evaluation of classification performance (ROC, AUC and
Error rate)

The classification was based on nearest neighbour analysis. For simple nearest
neighbour classification (1NN) a query sequence is assigned to the a priori
known class of the database entry that was found most similar to it in terms
of a distance/similarity measure (e.g. BLAST, Smith-Waterman etc.). For a
tree-based classifier (Section 4), the query was assigned to the class that was
nearest in terms of insertion costs (TreeInsert) or with the highest weight
(TreeNN ).

The evaluation was carried out via standard receiver operator character-
istic (ROC) analysis, which characterizes the performance of learning algo-
rithms under varying conditions like misclassification costs or class distri-
butions [21]. This method is especially useful for protein classification as it
includes both sensitivity and specificity, based on a ranking of the objects to
be classified [22]. In our case the ranking variable was the nearest similarity
or distance value obtained between a sequence and the positive training set.
Stated briefly, the analysis was then carried out by plotting sensitivity vs 1-
specificity at various threshold values, then the resulting curve was integrated
to give an ”area under curve” or AUC value. Note here that AUC=1.0 for
a perfect ranking, while for random ranking AUC=0.5 [21]. If the evaluation
procedure contains several ROC experiments (10 for Dataset A and 117 for
Dataset B), one can draw a cumulative distribution curve of the AUC values.
The integral of this cumulative curve, divided by the number of classification
experiments, lies in a [0, 1] interval with the higher values representing better
performances.

Next, we calculated the classification error rate - which is the fraction of
errors (false positives and false negatives) within all the predictions. Thus ER
= (fp+fn)/(tp+fp+tn+fn).

7 Acknowledgements

A. Kocsor was supported by the János Bolyai fellowship of the Hungarian
Academy of Sciences. Work at ICGEB was supported in part by grants from



20 Busa-Fekete et. al.

the Ministero dell.Universita‘ e della Ricerca (D.D. 2187, FIRB 2003 (art. 8),
”Laboratorio Internazionale di Bioinformatica”).

References

1. Sjölander K. (2004) Phylogenomic inference of protein molecular function: ad-
vances and challenges. Bioinformatics, Vol. 20, pp. 170-179.

2. Marco Cuturi, Jean-Philippe Vert. (2004) The Context Tree Kernel for Strings.
Neural Networks, Volume 18, Issue 8, special Issue on NN and Kernel Methods
for Structured Domains.

3. Mount, D.W. (2001) Bioinformatics. 1 ed. Cold Spring Harbor Laboratory
Press, Cold Spring Harbor.

4. Smith, T.F. and Waterman, M.S. (1981) Identification of common molecular
subsequences, J. Mol. Biol., 147, 195-197.

5. Needleman, S. B., Wunsch, C. D. (1970): A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J. Mol. Biol.
48:443-453.

6. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990)
Basic local alignment search tool, J Mol Biol, 215, 403-410.

7. Felsenstein J. (2004) Inferring phylogenies, Sinauer Associates, Sunderland,
Massachusetts.

8. Saitou N., Nei M. (1987) The neighbor-joining method: a new method for re-
constructing phylogenetic trees. Mol Biol Evol. Jul;4(4):406-25.

9. Eisen J.A. (1998) Phylogenomics: improving functional predictions for unchar-
acterized genes by evolutionary analysis. Genome Res. Mar; 8(3):163-7.

10. Zmasek,C.M. and Eddy,S.R. (2001) A simple algorithm to infer gene duplication
and speciation events on a gene tree. Bioinformatics, 17, 821-828.

11. Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B.,
Koonin, E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N.,
Rao, B.S., Smirnov, S., Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J. and
Natale, D.A. (2003) The COG database: an updated version includes eukary-
otes, BMC Bioinformatics, 4, 41

12. Lazareva-Ulitsky B., Diemer K., Thomas PD.: On the quality of tree-based
protein classification. Bioinformatics. 2005 May 1; 21(9):1876-90.

13. MathWorks, T. (2004) MATLAB. The MathWorks, Natick, MA.
14. Newick file format: http://evolution.genetics.washington.edu/phylip/

newicktree.html

15. Sonego P., Pacurar M., Dhir S., Kertész-Farkas A., Kocsor A., Gáspári, Z.,
Leunissen, J.A.M. and Pongor S. (2007) A Protein Classification Benchmark
collection for machine learning. Nucleic Acids. Res., in press.

16. Pollack, J.D., Li, Q. and Pearl, D.K. (2005) Taxonomic utility of a phyloge-
netic analysis of phosphoglycerate kinase proteins of Archaea, Bacteria, and
Eukaryota: insights by Bayesian analyses, Mol Phylogenet Evol, 35, 420-430

17. Cilibrasi, R. and Vitnyi, P.M.B. (2005) Clustering by compression, IEEE Trans-
actions on Information Theory, 51, 1523-1542

18. Kocsor, A., Kertész-Farkas, A., Kaján, L. and Pongor, S. (2005) Application
of compression-based distance measures to protein sequence classification: a
methodological study, Bioinformatics (22), pp 407-412.



Tree-Based Algorithms for Protein Classification 21

19. Rohlf FJ. (1963) Classification of Aedes by numerical taxonomic methods
(Diptera: Culicidae). Ann Entomol Soc Am 56:798-804.

20. Phylip package, http://evolution.genetics.washington.edu/phylip.html
21. Egan, J.P. (1975) Signal Detection theory and ROC Analysis. New York
22. Gribskov M. and Robinson. N. L.(1996) Use of receiver operating characteris-

tic (ROC) analysis to evaluate sequence matching. Computers and Chemistry,
20(1):25–33, 18.

23. Saigo, H., Vert, J.P., Ueda, N. and Akutsu, T. (2004) Protein homology detec-
tion using string alignment kernels, Bioinformatics, 20, 1682-1689.

24. Henikoff, S., Henikoff, J.G. (1992) Amino acid substitution matrices from pro-
tein blocks. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9.


