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Abstract. We evaluated methods of protein classification that use ker-
nels built from BLAST output parameters. Protein sequences were rep-
resented as vectors of parameters (e.g. similarity scores) determined with
respect to a reference set, and used in Support Vector Machines (SVM)
as well as in simple nearest neighbor (1NN) classification. We found,
using ROC analysis, that aggregate representations that use aggregate
similarities with respect to a few object classes, were as accurate as the
full vectorial representations, and that a jury of 6 1NN-based aggregate
classifiers performed as well as the best SVM classifiers, while they re-
quired much less computational time.

1 Introduction

Automated classification of protein sequences are important issues in computa-
tional biology as human annotation is costly and time consuming. Automated
protein function assignment methods are usually based on sequence similarity. A
classical method of assessing the similarity of two proteins is sequence compari-
son via Dynamic Programming, but due to the large size of current databases,
fast heuristic algorithms, such as BLAST [1] became the method of choice.

Liao and Noble [2] developed an efficient kernel method for detecting remote
protein homology based on pairwise sequence comparison [2]. Every protein was
represented as a vector of sequence similarity scores calculated with respect to
a reference set of sequences (we term this method full approach). One can then
train an SVM with these vectors, and use it to classify unknown proteins, repre-
sented as vectors built from similarity scores calculated with respect to the same
reference dataset. Since this approach maps the proteins to high dimensional
vectors, it has a high discriminative power at the expense of a relatively high
computational cost.

In the so-called aggregate approach developed by the ICGEB Group for the
SBASE library of protein domain sequences [3], the reference set is first aggre-
gated into groups and a protein is then represented as a vector of similarities
with respect to a set of groups. Because of the aggregation, the vectors are much
smaller than the vectors used by the full approach). The success of this approach
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depends on how the sequences are grouped, and how the similarities with respect
to the groups are defined; however, it potentially allows a substantial reduction
in the computation time. This strategy was employed to a combination of var-
ious BLAST output parameters (raw-score, hsp, etc. ) that were used to train
SVM classifiers used in the SBASE search engine [3].

In this paper we compare the full vector representation with various levels of
aggregate representations. We show that the performance of the full approach
can be reached using aggregate strategies, and further improvements are possible
employing a jury of Nearest Neighbor (1NN) classifiers that use different BLAST
output parameters.

2 Methods

2.1 BLAST Output

BLAST (acronym for Basic Local Alignment Search Tool) is the most widely
used alignment algorithm for protein sequence comparison [1]. The fundamen-
tal unit of BLAST, the hsp (High-scoring Segment Pair), is a pair of sequence
segments (taken from the two aligned sequences) whose local alignment score
exceeds a cutoff score. msp (Maximal-scoring Segment Pair) is the hsp with the
highest score in a pairwise comparison of two sequences, given a set of hsps and
a scoring system. For each hsp BLAST also outputs a raw score (rs), a bit-score
(bs) which is independent of the scoring-matrix; and an e-value which estimates
the number of hsps having a score S (or higher) to have occurred by chance.
In this paper, msp and hsp are interchangeable because we only consider the
best hsp.

2.2 Datasets

LN is a protein sequence dataset especially designed for testing classifiers [2].
This dataset of 4,352 protein sequences was obtained from SCOP v.1.53 after
removing similar sequences using an e-value threshold of 10−25 . The 54 clas-
sification tasks were obtained by selecting families with at least 5 members for
positive test set and superfamilies with at least 10 members outside the family
for positive training set.

SCOP95 is a protein dataset obtained from SCOP database v.1.69 by con-
sidering proteins with sequence identity lower than 95%. The 11,944 entries are
distributed in 246 classification tasks.

SCOP40mini is a subset of SCOP95, but the sequences are 40% similar at
most. Using a strategy similar to [2], 1,357 protein sequences are divided in 55
tasks.

CATH95 is a protein dataset obtained from proteins in CATH v.3.0.0 with
sequence identity below 95%. The tasks were derived selecting similarity groups
(S) with at least 5 members, and groups with at least 10 members outside S but
within the same homology group (H) for the positive set. CATH95 comprehends
165 classification tasks and 11,373 protein sequences.
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SCOP40mini and LN are non redundant datasets. The benchmark datasets
used in this work are available in:

1) http://www.cs.columbia.edu/compbio/svm-pairwise [2];
2) http://net.icgeb.org/benchmark/ [7]

2.3 Classification Algorithms and Performance Assessment

In this study, we have performed classification simulations using Nearest Neigh-
bor (1NN) and Support Vector Machines (SVM) [4]. 1NN assigns to an object
the class of the closest training example in the feature space. SVM is a classical
algorithm that computes an optimal hyperplane which separates the positive
from the negative training sets. SVM classification is based on the query po-
sition regarding this hyperplane. In this work we used the SVM algorithm as
implemented in Ref.[9].

Classification performance was characterized using the Receiver Operating
Characteristic (ROC curve) using the ROCR package [6]. ROC curve is a plot of
true positive rate vs. false positive rate through every prediction threshold value.
The Area Under ROC Curve (AUC) is 0.5 for random prediction, and it is 1
when all positive examples have higher predicted values than the negative ones.
The Average Area under the ROC curve is an average of AUC values calculated
from a number of classification tasks defined on a larger database [2,5,6].

3 Results

3.1 Comparing Various Aggregation Strategies

Suppose a set of proteins is divided into classes, folds, superfamilies, and families
as in the diagram presented in Figure 1. A protein can then be represented either
as a vector of similarity scores, calculated with respect to all proteins in the set,
or as a smaller vector, composed of similarity scores calculated with respect to
protein families. Using vectors calculated with respect to families, superfamilies,
folds and classes, we obtain smaller and smaller vectors. These vectors can then
be used in classifiers using a classical machine learning arrangement as described
in [2,7]. In Figure 1, the black squares represent the remote family to be detected.

Figure 2 shows the classifier performance using full pairwise representation
for the SCOP40mini dataset. The results show that the classifier performance
is usually better if one uses rs as kernel, followed by e-value and hsp. The tests
have also shown that classification performance is task and dataset dependent.

The Unary Aggregation is the simplest possible representation which is based
exclusively on the positive training set. It does not consider the negative exam-
ples when modeling the protein. In a previous paper , we have shown that using
the Binary Aggregation, based on separately aggregated positive and negative
training sets, considerably improves the performance of a classifier [5]. The most
conspicuous result in Figure 4 is the excellent performance of the binary strategy
based on the maxima of the positive and negative training sets. For most of the
tests, the binary strategy, which is the Ref.[3] approach, has yielded the best
AAUCs, sometimes even better than the full pairwise approach.

https://vpn.umbc.edu/compbio/,DanaInfo=www.cs.columbia.edu+svm-pairwise
https://vpn.umbc.edu/benchmark/,DanaInfo=net.icgeb.org+
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Fig. 1. Diagram of possible aggregations of the protein sequence similarities represen-
tation based on SCOP for superfamily classification. On the top, the arrows show the
classes, folds, superfamilies, and families division. The proteins similarities are repre-
sented by geometric figures related to their folds, and shaded according to their families.
The aggregations (maximum or average) are represented by arrowed arcs. On the left
side, the aggregation criteria are shown. See text for further details.
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Fig. 2. AUC for every task of the SCOP40mini dataset for three BLAST output pa-
rameters: rs (solid line), hsp (gray line) and e-value (dashed line). The tests were done
using full pairwise representation [1] and an SVM with linear kernel. The parameters
were optimized by simple grid search.
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3.2 Correlation and Influence on Classification Performance of
BLAST Output Parameters

The utility of various BLAST output parameters (raw-score, bit-score, e-value,
hsp-length and bit-score ) as well as different aggregation strategies (maximum,
average) for building kernel functions was estimated via correlation analysis and
classification tests on several benchmark datasets, using the 1NN algorithm.

The results in Table 1 show that bit-score and e-value are the BLAST output
parameters that apparently contain most of the information. The classification
performance is generally better when aggregates are based on the maximal simi-
larity instead of average similarity. In most of tests, raw-score and bit-score have
yielded the best AUCs. This is in fact expected as they are linearly related.

The tendency of AAUCs is in good agreement with the correlation analysis.
Table 2 shows the average correlation between BLAST similarity measures for
the LN dataset. It is interesting to note that some features are quite correlated,
e.g. for bsmax and rsmax, the correlation is 0.99217. A priori, AAUCs results
suggest that the higher the mutual information, the more similar are their clas-
sification performances. This analysis can be particularly relevant for feature
selection in a multiple input approach.

Table 3 shows the classification performances of 1NN on different kernel spaces
obtained from combined BLAST output parameters, e.g. rs/len(query), raw-
score divided by the length of the query. In some cases, a feature that has a high
AUC in maximum aggregation, has a low AUC using average aggregation and
vice-versa. This is because the positive and negative training sets are mapped
to 2 scalars.

Finally, Figure 3 shows the performance (AAUCs) of SVM classifiers with
a linear kernel using several single and combined BLAST output parameters
as kernels and different representation strategies for the SCOP40mini dataset.

Table 1. Average Area Under Curve (AAUC) for 1NN classification based on Single
BLAST output parameters

Aggregation Strategy: Maximum
BLAST output

Dataset hsp raw-score (rs) bit-score (bs) e-value (ev)

LN (54)* 0.7840 0.7992 0.7992 0.7917
SCOP95 (250) 0.6971 0.6986 0.6986 0.6974
CATH95 (165) 0.9786 0.9789 0.9789 0.9787

Aggregation Strategy: Average
BLAST output

Dataset hsp raw-score (rs) bit-score (bs) e-value (ev)

LN (54) 0.7640 0.7903 0.7902 0.7325
SCOP95 (250) 0.6936 0.6967 0.6967 0.6933
CATH95 (165) 0.9770 0.9788 0.9788 0.9755

* Values in parenthesis mean quantity of tasks in the dataset.
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Table 2. Average of Correlation between BLAST output parameters for the LN dataset

hspmax rsmax bsmax evmax hspavg rsavg bsavg Avg(log(ev))

hspmax 1
rsmax 0.7253 1
bsmax 0.702 0.9945 1
evmax -0.6105 -0.8868 -0.8952 1
hspavg 0.8758 0.7864 0.7808 -0.7029 1
rsavg 0.6214 0.9371 0.9632 -0.8981 0.7532 1
bsavg 0.6037 0.9235 0.9554 -0.8876 0.7370 0.9975 1
Avg(log(ev)) -0.5421 -0.8696 -0.9146 0.8461 -0.6800 -0.9703 -0.9849 1

Table 3. Average Area Under Curve (AAUC) using 1NN and different kernel functions
from combined BLAST output parameters for maximum or average aggregates

Combined BLAST output LN (54) SCOP95 (250) CATH95 (165)

NSD * 0.7774 0.6975 0.9761
Max(hsp/len(query)) 0.7086 0.6934 0.9784
Max(hsp/len(subject)) 0.7828 0.6976 0.9788
Avg(hsp/len(query)) 0.6900 0.6892 0.9770
Avg(hsp/len(subject)) 0.7802 0.6946 0.9773
Max(rs/len(query)) 0.5909 0.6872 0.9768
Max(rs/len(subject)) 0.7744 0.6976 0.9786
Max(rs/rs(query)) 0.5935 0.6873 0.9769
Max(rs/rs(subject)) 0.7738 0.6976 0.9786
Avg(rs/len(query)) 0.8135 0.6850 0.9736
Avg(rs/len(subject)) 0.7942 0.6949 0.9782
Avg(rs/rs(query)) 0.8187 0.6850 0.9737

* NSD means number of neighbors. Max and Avg mean maximal and average aggre-
gation. len() is for the sequence length of subject or query.

Based on the results presented in Table 3 and Figure 3, we selected the best
performing features for building combined classifiers. Among these, (NSD) de-
fined as the number of significant similarities (similarity score above a certain
threshold) is particularly interesting as is is not well correlated with the other
parameters Max(hsp/len(subject)), Avg(rs/len(query)), etc.

Based on these results, we have trained SVM classifier that inputs 6 differ-
ent BLAST output parameters as features. Although an optimal feature set is
dataset dependent, the results in Figure 5 show that using a set of features can
improve the classification performance as compared with an individual feature,
but not significantly. Especially, the performance improvement is only a bit bet-
ter than using rsmax alone.

3.3 Complexity Analysis

The total time for running a protein classification using a machine learning (ML)
algorithm consists of training time and test time. The training time has three
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Fig. 3. Boxplot of AAUCs (1NN) for some single and combined BLAST output pa-
rameters for the LN dataset. The boxes for the combined output parameters are shown
in light gray.

components: a) the alignment i.e. the BLAST running time; b) an aggregation
time necessary to format the data to be used by the ML, and c) the learning
time taken by the ML algorithm.

BLAST itself has three basic steps: a pre-alignment step, where all high scor-
ing complementary k-words of the query sequence are selected and searched in
the database; and the actual alignment phase, when the matched regions are
expanded. Supposing that N is the length of the query, M is the length of the
database, and k is the word length and, since there are 20k possible words, the
complexity of BLAST in terms of big O notation is given by O(N)+O(N.20k)+
O(M) + O(M.N), i.e., O(M.N). Although, it has the same complexity as DP
algorithms, BLAST is much more efficient (∼ 500 times) since it discards non
significant local alignments.

Concerning SVMs, standard training algorithms have time complexity of
O(n3), and space complexity of O(n2), where n is the size of input data [8]
– n is the amount of sequences in the training set. Although there are improved
algorithms that can reduce the time complexity to O(n2.3), and to O(n) with
parallelization, our tests were performed in R language using SMO-type de-
composition method [9]. The time complexity for the SVM training phase is
nSV .Dn.n, and nSV .Dn for test phase, where nSV is the number of support
vectors and Dn is the dimension of the input data. In a similar way, the space
complexity for the training phase is n2, and nSV .Dn for the test phase.

The total learning computational complexity of the full pairwise approach is
O(n3), since it comprehends obtaining the kernel using BLAST, O(n2.M2), and
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Fig. 5. Boxplot of AUCs for classifiers based on a linear SVM for the SCOP40mini
dataset using 6 different similarity measures and a combination of them

the SVM training, n2.nSV . For the groupwise approaches the BLAST complex-
ity remains the same, but an aggregation step with complexity O(n2) is added
to reduce the full pairwise matrix. Furthermore, the SVM training complexity
step diminishes to ng.n.nSV because of the reduction of the kernel matrix. In
conclusion, the computational complexities for groupwise approaches are still
polynomial, but one degree lower, O(n2). It is noteworthy that using 1NN re-
quires no training at all.
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The first step of test phase consists of aligning a query to every sequence
in training set using BLAST. This step has time complexity of n.M2. BLAST
running time are constant, independent of the algorithm or representation used.
The complexity of the aggregation step is O(n). The SVM test complexity is
given by n2.nSV when using full pairwise strategy, and it is n.nSV for groupwise
approaches. Hence, the computational complexity for test phase can be given by
O(n2) for the full approach, and O(n) for the aggregate ones. For test phase,
the computational complexity using 1NN is equivalent to SVM.

The SVM time complexity used here was based on a linear kernel. When using
a radial kernel, for example, the complexity increases proportionally to nSV .

Briefly, the more efficient the aggregate representation, the lower is the learn-
ing complexity. Usually, running time for the test phase is smaller than that for
the training phase. As expected, the most resource intensive strategy is the full
approach.

3.4 A Protein Classifier Committee Machine

Based on the insights from analysis and tests performed here, we have designed
a simple heuristic predictor that is based on a few BLAST output parameters.
The predictor works like a voting system of 1NN predictors predicting protein
function based on sequence similarity. The algorithm description is the following:

Given a query, one runs BLAST against the training set in order to obtain
the categories of:

a) the protein (in the training set) which has higher raw-score (rs);
b) the protein which has higher hsp;
c) the proteins which have the five highest bit-score (bs).

The predictor uses the categories, i.e. functions of (a) and (b) as votes. A third
vote comes from an aggregate feature that is given by the majority function
from the five proteins in (c). The third vote is a variation of the NSD approach,
adapted in such a way that categories with few instances are not underweight.

The basic idea is that the majority vote suggests the query function. If no
majority is obtained, the Committee Machine follows the NSD vote, because it
has yielded the best results during tests in SBASE [3].

The computational efficiency of the predictor is excellent. First, it does not
require a training time and, secondly, it only needs running BLAST and ordering
its output during tests. For example, if SVMs were used instead, it would require
further training/tests for a set of SVMs equivalent to the amount of categories
in the dataset.

In spite of its simplicity this 1NN-based Committee Machine has proved to
be as accurate as the SVM classifier, providing the best performance on the
SCOP40mini dataset. It consists of a set of linear SVMs that uses 6 different
BLAST output parameters as inputs. Since the Committee Machine can not be
assessed by ROC Curve, the classifiers performances are compared in terms of
True Positive Rate (TPR) and True Negative Rate (TNR), in Table 4.
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Table 4. Average Classification in terms of True Positive and Negative Rate for a set
of 54 SVMs using a linear kernel and 6 BLAST output parameters as input vs. the
simple Committee Machine for the SCOP40mini dataset

Classifier TPR TNR

54 SVM(All6) 0.5532 0.9446
1NN-Committee Machine 0.5067 0.9777

4 Conclusions

We have assessed the performance and computational complexity of protein
classifiers based on kernel spaces obtained from pairwise sequence alignment.
The binary representation strategy has presented one of the best classification
performances, and also one of the minimum computational time cost.

We compared different BLAST output parameters in a feature selection anal-
ysis. The analysis showed that the feature performances are dataset dependent
and there is no unanimously best similarity measures applicable to all datasets.
However, some combined features have shown very good performance and could
be taken into account when using a reduced approach.

Finally, we have shown that it is possible to design a simple and efficient
protein classifier using a combination of separate classifiers into a voting system.
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