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Multispecies microbial communities.
Part I: quorum sensing signaling in bacterial and mixed bacterial-fungal communities
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The discovery that many bacterial species coordinate their behavior when they form a group has revolutionized bacteriology in the 1990s. According to this mechanism,
termed “quorum sensing’, bacteria produce chemical signals which are either secreted or released into the external environment. Since the external signal concentration
is tightly correlated with population density, any concentration-dependent response by the individual cells will result in a density dependent community behavior. This
fundamental mechanism has been shown now in a variety of bacterium species and interesting parallel mechanisms were found in more distant organisms. This essay
gives an overview of bacterial quorum sensing and its applications to bacterial-fungal interactions.

KEY WORDS: quorum sensing

Odkrycie faktu, e wiele gatunkdw bakterii koordynuje wzajemnie swoje zachowania, stanowito przetom w bakteriologii lat 90. ubiegtego stulecia. W mechanizmie okre-
Slanym jako quorum sensing bakterie wytwarzajg oraz wydzielaja lub uwalniaja do $rodowiska zewngtrznego chemiczne substancje przekaznikowe. Stezenie w érodowi-
sku zewngtrznym substandji przekaznikowych jest scile skorelowane z gestoscia populacji, tak wiec odpowied? poszczegélnych komérek bedzie zalezata od zachowania
catej populacji. Ten bardzo istotny mechanizm zostat wykazany u roznych gatunkow bakterii, a analogiczne mechanizmy zostaty opisane takze w przypadku innych orga-

nizméw. Niniejsza praca koncentruje sig na opisie bateryjnych zachowarh typu quorum sensing i podobnych reakcji w stosunkach bakteryjno-grzybiczych.

SLOWA KLUCZOWE: quorum sensing

Introduction

The discovery of chemical communication among bacteria in the
1990s has fundamentally changed the traditional view that pictures
bacteria as single-celled organisms living in isolation. In the last
fifteen years it has become increasingly evident that bacteria have
the potential to establish highly complex communities. In fact, most
bacteria are able to monitor their population density by producing
and detecting small molecular weight signaling compounds (also
called autoinducers) in a process which has been termed “quorum
sensing” (QS) (1). Since the original reports and discoveries, the field
has substantially expanded, and recent genomic analyses confir-
med that in addition to known QS systems, there is substantial cross
talk between various species as many bacteria may respond to
a variety of known and unknown signals (Subramoni and Venturi,
2009; Ryan and Dow, 2008). As of today, bacterial signalling can be
integrated into a larger context of interspecies signaling that plays
role in a range of quite distant fields such as host parasite interac-
tions, plant-bacterium interactions etc (2-4). Bacterial-fungal com-
munities occupy a special place in this picture since bacteria very
often accompany a variety of the known fungal infections. This

essay gives a brief overview of bacterial quorum sensing and some
of the known cases of bacteria-fungal interactions.

Quorum sensing in bacteria

Quorum sensing (QS) is a cell-cell communication process in
which bacteria use the production and detection of autoinducers,
to monitor cell population density and make a coordinated respon-
se. When the autoinducer reaches a critical level, the population
responds through the coordinated expression of specific target
genes (1). This synchronous response of bacterial populations, con-
fers them a form of multicellularity and enables them to adapt and
survive continually to changing environments by coupling indivi-
dual cell responses to population-wide alterations-(5).

The fundamental steps involved in the response to fluctuations
in cell number are comparable in all QS systems. In a canonical sys-
tem, the autoinducer molecules are passively released or actively
secreted outside of the cells. As the number of cells in a population
increases, the extracellular signal concentration likewise increases
and when it accumulates above the minimal threshold level requ-
ired for detection, cognate receptors bind the autoinducers and
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trigger signal transduction cascades that result in population-wide  quinolones and a molecule termed ‘diffusible signal factor (DSF)

changes in the gene expression (fig. 1).

(tab. 1).

Thus far the most studied autoinducers are the N-acylhomoserine Acyl homoserine lactones (AHLs) are believed thus far to be
lactones, however other examples of compounds involved in bac-  the major class of autoinducer signals used by Gram-negative bac-
terial quorum sensing are: oligopeptides, Autoinducer type-2 (Al-2),  teria. These molecules have a conserved homoserine lactone ring
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Fig. 1. The canonical scheme of bacterial quorum sensing regulation.

Ryc. 1. Schemat bakteryjnej regulacji quorum sensing

Tablel:  Examples of QS signaling molecules
Tabelal:  Przykfady substsncji przekaznikowych w QS

Compound & structure Example of producer organisms Qs system Ref
2Zwiqzek i struktura Przyktady organizméw wytwarzajqcych System gs Poz. lit.
N-acyl homoserine lactones Agrobacterium tumefaciens TralR )
(0] H Pseudomonas aeruginosa LasIR, RhlIR (10,11)
N. _R Burkholderia cepacia CeplR (12)
0 \ﬂ/ Pantoea stewarti EsalR (13)
(o] Vibrio fisheri LuxIR (14)
DSF Diffusible signal factor Xanthomonas campestris pv. campestris Rpf system (15)
Chemical analogs also found in:
___COOH Xylella fastidiosa (16)
Y\/W\_/ Stenotrophomonas maltophilia (17)
Gram Positive Oligopeptides
Cyclic:
ComX ADPITRQWGD Staphylococcus aureus AgrC/AgrA (18)
CSP EMRLSKFFRDFILQRKK
AIP-1 YSTCD}FLM:I
AIP-2 GVNACSSLF
AIP-3 INCDFLL B.subtilis ComP/ComA (19)
AIP-4 YSTCYFIM S. pneumoniae ComD/ComE (20)
Autoinducer Type 2 Al-2 21)
(22)
Vibrios Salmonella Vibrio harveyi LuxS/LuxPQ (23)
Ho o Ay Vibrio cholerae LuxS/LuxPQ
O: /\\O a— Salmonella thypimurium LuxS/LsrB
'L/Ont(-nCHa HOI-UIHICHa
o (0] s
Ho Ho" 0}
PQS Pseudomonas Quinolone Signal Pseudomonas aeruginosa PgsABCDE-R (24)
(0]
OH
|
N
H
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with an acyl side chain, which may vary from 3 to 18 carbons. The
length and saturation level of the acyl chain coupled to the presen-
ce or absence of oxo or hydroxyl substitutions at the C3 position of
the acyl chain provide variation and specificity for quorum sensing
communication in mixed bacterial populations. The homoserine
lactone ring imparts hydrophilic character on the molecule, while
the length, substitution and saturation modulate their hydropho-
bicity (6). All AHLs are believed to be able to freely diffuse across
the cell envelope; however efflux pumps may actively export some
longer chain AHLs (7). In an AHL-QS circuit, AHLs are synthesized
by a Luxl-type protein and at critical concentration, the AHL binds
a LuxR-type protein, which gets activated by exposing a DNA bin-
ding domain that recognizes a palindromic lux box cis-element
localized in the promoter region of the target genes (8). The trans-
cription of the genes is then driven or repressed, via interaction of
the LuxR-AHL complex with the RNA polymerase. Importantly,
often the Jux/ and JuxR genes are under a positive induction feed-
back loop forming a regulatory circuit, which generates rapid
amplification of the signal (6).

Gram positive bacterial oligopeptides autoinducers range from
5 to 34 aminoacids in length, and are often postranslationally
modified by the incorporation of lactone and thiolactone rings,
lanthionines and isoprenyl groups. Due to their hydrophobicity,
oligopeptide release requires specialized transporters, and two-
component signalling proteins located in the membrane then
mediate its perception with signal transduction occurring by a pho-
sporylation cascade (25). Different oligopeptide autoinducers con-
tain subtle variations, which confer signalling specificity because
of the discriminatory properties of their cognate receptors. Some
examples are ComX and CSF of Bacillus subtillis, CSP from S. pneu-
moniae, and the four types of AIP (Autoinducer Peptide) from
S. aureus (18-20).

The Autoinducer 2 (Al-2) is found both in other Gram negative
and Gram-positive bacteria and is thought to enable interspecies
communication (26, 27). The LuxM protein is responsible of the
synthesis of the Al-2 precursor, DPD (4,5-hydroxy-2,3-pentanedione),
which cyclises spontaneously to give rise to several related furano-
nes that are believed to be in equilibrium. Importantly in V. harveyi,
Al-2 contains boron, while the Al-2 active form in Salmonella does
not (tab. I). Different species of bacteria may recognize distinct DPD
moieties, which allows bacteria to respond to their own DPD and
also to those produced by other bacteria (23). In V. harveyi, the Al-2
circuit also integrates with other intercellular signalling systems
resulting in a complex and timely regulation of bioluminescence
(28). In other species it also control functions such virulence factor
production, motility and biofilm formation (29).

The diffusible signal factor (DSF) was first identified in Xantho-
monas campestris, but is also produced by other species including
X. oryzae, Xylella fastidiosa and Stenotrophomonas maltophilia. DSF
is an unsaturated fatty acid (cis-11-methyl-2-dodecenoic acid), and
is synthesized by RpfF protein, a two-component system is then
responsible for DSF perception. All these gene products are enco-
ded by the rpf cluster (15, 30). The rpf/DSF system controls diverse
functions including virulence factor systems, aggregative behavio-
ur and biofilm formation. A similar molecule was also recently
reported in Burkholderia spp. (BDSF) and its role in interspecies
communication is currently under investigation (31).

One of the Pseudomonas autoinducers is known as Pseudomo-
nas quinolone signal (PQS) which is a 2-heptyl-3hydroxy-4 quino-
lone (24) .This molecule is synthesized from anthranilate via the

action of pgsA-D and pgsH gene products. Together with other QS
circuits in P. aeruginosa, PQS functions to control a battery of genes
required for virulence and biofilm formation (32). Examples of
other autoinducers are the CAI-1 of V. cholera and V. harveyi, brady-
oxetin from Bradirhizobium japonicum and the diketopiperazines
from Pseudomonas spp. and Proteus mirabilis (5).

Fungal and bacterial-fungal interactions

Consortia of bacteria and fungi are abundant in the human
body and are the source of serious medical problems (2-4). Candida
albicans is a benign commensal of the human body which can
however induce serious infections in immunocompromised indivi-
duals. C. albicans is known to associate with a large variety of bac-
teria, such as Staphyloccoccus spp. in oral sites, Pseudomonas spp.
and Staphylococcus spp. in burn wounds, Enterobateriaceae in intra-
abdominal sites and Pseudomonas spp. in the respiratory tract.
C. albicans and the dimorphic yeast-like fungus Malassezia, are fre-
quently found in association with a variety of bacteria on the sur-
face of catheters. It is increasingly recognized that these associa-
tions are not fortuitous but are mediated by specific molecular
signals actively recruiting members of the cellular community.

C. albicans can exist in the form of budding yeast, filamenting
hyphae or pseudohyphae, and can also form poysaccharide-matri-
x-enclosed biofilm communities. The corresponding transitions are
regulated by various exogenous and endogenous signals. Farnesol
produced by C. albicans cells represses filamentation in a cell-den-
sity dependent manner; interestingly, this was the first fungal QS
system identified (33). Tyrosol is another QS molecule produced by
C. albicans that is able to specifically shorten the lag phase of growth
in a low-density culture without affecting the exponential growth
phase (35). Phenylethanol and tryptophol induce pseudohyphal
growth in S. cerevisige in a cell density-dependent way. Many of the
known fungal signaling molecules are volatile so they can travel
between distant, sessile cells and/or communities (tab. Il).

C. albicans and P. geruginosa are frequently found in the same
niche and interact in a variety of ways. P. aeruginosa is able to form
biofilms on the hyphae of C. albicans and can kill the hyphae by

Table lI:

Examples of fungal signaling molecules

Farnesol C. albicans (33)

34)
X X XNon

Tryptophol C. albicans (35)

H S. cerevisiae

N
O

OH

Tyrosol C. albicans (35)

S. cerevisiae

HO—< >—\
OH

Phenlethanol

O

C. albicans (35)
S. Cerevisiae
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producing phenazines (36) and phospholipase C (37). On the other
" hand, yeast-form C. albicans cells and P. aeruginosa can also form
mixed biofilms in which the two species interact by signals. AHL
signals of P. aeruginosa inhibit the hyphal growth of C. albicans so
P. geruginosa apparently keeps C. albicans cells in the yeast form
suitable for mixed biofilm formation. On the other hand, farnesol
and other unidentified factors of C. albicans influence QS in
P. aeruginosa (36, 38).

One of the notorious problems of studying microbial consortia
is the lack of simple and straightforward model systems. Animal
models are frequently used, for instance intravenous or intraperito-
neal injection of mice with Candida albicans and Escherichia coli has
been used to study polymicrobial bacteraemia or peritonitis, respec-
tively (39, 40). Burn wound and subcutaneous-infection models
have been used to study mixed infections with Candida spp. and
Pseudomonas aeruginosa (41-43). Mammalian models for polymi-
crobial interactions have also been developed, including a model of
vaginal candidiasis (44).

Conclusions

In this essay we focused on the fundamental principles of bacte-
rial quorum sensing and its potential applications of bacterial-fun-
gal communications. The unifying view emerging from recent stu-
dies is that the various signalling molecules sequestered by micro-
bes may create a variety of chemical milieus allowing the formation
of stable microbial communities. Thus far, QS bacterial communities
are the best known examples, we can expect that a variety of other
unicellular organisms can also form mixed microbial communities
such as bacterial-fungal associations as observed in various patho-
logical conditions. Understanding the signaling mechanism stabili-
zing microbial communities may be crucially important for desi-
gning better prevention and control strategies.
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