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Abstract

Development and testing of protein classification algorithms are hampered by the fact that the protein universe is characterized by groups
vastly different in the number of members, in average protein size, similarity within group, etc. Datasets based on traditional cross-validation (k-
fold, leave-one-out, etc.) may not give reliable estimates on how an algorithm will generalize to novel, distantly related subtypes of the known
protein classes. Supervised cross-validation, i.e., selection of test and train sets according to the known subtypes within a database has been
successfully used earlier in conjunction with the SCOP database. Our goal was to extend this principle to other databases and to design
standardized benchmark datasets for protein classification. Hierarchical classification trees of protein categories provide a simple and general
framework for designing supervised cross-validation strategies for protein classification. Benchmark datasets can be designed at various levels of
the concept hierarchy using a simple graph-theoretic distance. A combination of supervised and random sampling was selected to construct
reduced size model datasets, suitable for algorithm comparison. Over 3000 new classification tasks were added to our recently established protein
classification benchmark collection that currently includes protein sequence (including protein domains and entire proteins), protein structure and
reading frame DNA sequence data. We carried out an extensive evaluation based on various machine-learning algorithms such as nearest neighbor,
support vector machines, artificial neural networks, random forests and logistic regression, used in conjunction with comparison algorithms,
BLAST, Smith-Waterman, Needleman-Wunsch, as well as 3D comparison methods DALI and PRIDE. The resulting datasets provide lower, and
in our opinion more realistic estimates of the classifier performance than do random cross-validation schemes. A combination of supervised and
random sampling was used to construct model datasets, suitable for algorithm comparison.

The datasets are available at http://hydra.icgeb.trieste.it/benchmark.
© 2007 Published by Elsevier B.V.
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1. Introduction

program of Carugo and Pongor; SCOP, Structural Classification of Proteins,
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of Orengo and Thornton.
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Classification of protein sequences and protein structures is one
of the crucial problems of computational genomics. In a typical
application, proteins of a newly sequenced genome are to be
classified into one of the several thousand a priori known structural
or functional categories, which is carried out by automated
methods such as machine-learning algorithms. In view of the
large number of new genomes sequenced, it is critically important
to define benchmark datasets for assessing the accuracy of
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classification algorithms. This work is undertaken in order to
propose a general framework in which benchmark datasets can be
constructed.

In the practice of machine learning, cross-validation techniques
are used to assess the accuracy of classification methods. Cross-
validation is based on training a machine-learning algorithm on
one, randomly picked part of the data and then testing it on another
part (this is the so-called holdout method). In the 4-fold cross-
validation approach the data are randomly divided into & disjunct
subsets approximately equal in size, and the holdout method is
repeated & times, using one of the & subsets as the test set while the
other k—1 subsets are put together to form a training set. Sub-
sequently the average of a performance measure across all k& trials
is computed. Finally, the leave-one-out approach is a k-fold
technique with k=1, i.e., each object is considered a test set in
itself while the training is carried out on the rest of the database.

The principle underlying cross-validation is the attempt to
produce training sets that best approximate the distribution of the
expected test samples, and this is achieved with randomly picked
subsets. Protein classification however requires a different
approach, because of the biological nature of the problem itself.
Namely, most genomes contain novel variants of the known
proteins, i.e., the similarity distribution of a known protein family
in a newly sequenced genome is in fact expected to be different
from rather than similar to that of its known variants. So the
property relevant to biologists is how well a classifier will
generalize to novel types of the already known groups. The ran-
dom cross-validation methods mentioned earlier do not provide
information on this property. However, one can assess the
generalization capability of a classifier using additional knowledge
on the protein classes. For example, if it is known that a given
group consists of subgroups, one can use one subgroup as the
positive test set and pool the others as the positive training set. One
can repeat this procedure for each of the subgroups. With this
method each of the subgroups is considered one-by-one as a
“newly discovered” subtype, so the method will estimate the
classifier’s average ability to discover new variants. This technique
is similar to A-fold cross-validation; however, the subgroups are

Table 1

based on our knowledge, so we can speak about a knowledge-
based or supervised cross-validation strategy as opposed to the
random cross-validation techniques. Such a subdivision of the data
was applied previously to SCOP superfamilies and families [2—6].

The aim of the present work is to explore the principles of
developing benchmark datasets for protein classification based
on arbitrary—hierarchical schemes. Our starting point is that the
generalization capabilities of an algorithm can be characterized
by testing how well it is able to recognize the already known
subgroups within a given group. Since the seminal paper of
Lindahl and Elofsson [6] these studies were restricted mostly to
the superfamily/family level of the SCOP database [3—5,7], here
we show that the process can be generalized to any level of the
structural hierarchy, and in fact to any database on which a
hierarchical classification scheme is defined, such as CATH [7],
COG [8] or UNIPROT [9].

Recently we established a collection of protein classification
tasks [1]. With the present work we seek to lay down the general
rules how to construct benchmark datasets, and to answer few
specific questions: (i) do supervised and random cross-
validation schemes provide different results (Sections 3.1 and
3.2)? (ii) How critical is the choice of the negative sets, and how
can we restrict their size to computationally manageable
numbers (Sections 3.3). (iii) Can we consistently rank
comparison measures and machine-learning algorithms based
on the classification experiments, i.e., is it meaningful to design
small benchmark datasets for algorithm development (Sections
3.4)? Sections 4 summarizes the conclusions and Sections 5
gives a brief summary description of the method.

2. Materials and methods
2.1. Datasets

SCOPY5. The sequences were taken from the SCOP
database 1.69 [10]. The entries of the SCOP9S5 (<95% identity)
were downloaded from the ASTRAL site http:/astral.berkeley.
edu/. 121 Non-contiguous domains were discarded and 11944

Comparison of random and supervised cross-validation strategies on the example of the Lipocalin superfamily * of the SCOP database

Family No. of family No. of family Area under Average area
members in +test members in +train  curve under curve
A B C D E F
(1) Leave one out Retinol-binding 1 27 0.9908 0.9908
Fatty acid binding 1 26
(2)  5-Fold cross-validation Retinol-binding 3-7 19-20 0.9996, 0.9982, 1.0000, 0.9979,  0.999127 (0.99—-1.0)
Fatty acid binding  4-7 19-23 1.0000
1 Retinol-binding 28 0 0.8635
(3)  Supervised cross-validation Fatty acid binding 0 27 0.8243 (0.79-0.86)
2 Retinol-binding 0 28 0.7851
Fatty acid binding 27 0

? The superfamily consists of 58 sequences, 27 in the fatty acid binding family and 28 in the retinol-binding family, as well as 3 further sequences that, in the
supervised case, were not used as members of the +test group. The negative group was the rest of the SCOP95 database which was randomly subdivided either into
equal test and train groups [in cases (1) and (3)] or into 80% —train and 20% —test groups (2). The AUC value characterizes the efficiency of the ranking, for perfect

ranking it is 1.00, for random ranking it is around 0.5.
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Table 2
Classification performance calculated on the SCOP95 dataset in which the
negative set was subdivided in various ways

Division of —set into INN SVM
test and train
A B C

By sequence 0.8397+0.1696 0.8698+0.1408

By family 0.8352+0.1743 0.8641+0.1472
By superfamily 0.8435+0.1654 0.8686+0.1418
By fold 0.8193+0.1849 0.8455+0.1628

Sequence comparison by the Smith-Waterman algorithm. Results are average+
standard deviation of 246 classification tasks in each of which a SCOP family was
the +test set for the respective superfamily (total no of sequences=11 944). The
negative set was the rest of the database (11,000—11,500 sequences) which were
divided in various ways as indicated in column A. Subdivision by sequence
corresponds to random division, the others rely on the knowledge of the subgroups.

entries were retained. The sequences were stored in concate-
nated FASTA format. The subdivisions into +test, +train, —test,
—train sets are described in Tables 1 and 2.

CATHY95. The sequences were taken from the CATH
database v.3.0.0 [7]. The entries of the CATH95 (>95%
identity) selection were downloaded from the ftp://ftp.bio-
chem.ucl.ac.uk/pub/cathdata/v3.0.0/ site. The 1648 non-contig-
uous domains were discarded and 11373 were retained. The
sequences were stored in concatenated FASTA format.

SCOP40mini. The sequences were taken from the SCOP
database 1.69 [10]. The entries of the SCOP40 (<40% identity)
were downloaded from the ASTRAL site http://astral.berkeley.
edu/. 53 non-contiguous domains were discarded and 7237
entries were retained. The sequences were stored in concate-
nated FASTA format. Protein families, with at least 5 members
and at least 10 members outside the family but within the same
superfamily in SCOP95 were selected. From this selection those
families were selected as positive test that had at least 10
members outside the family but within the same superfamily in
the selection (total: 1357 proteins/55 classification tasks).

The subdivision of the various datasets into +test, +train, —test,
—train sets are described in Tables 3, 4, 5, 6 and 7. For further
details, see http://hydra.icgeb.trieste.it/benchmark.

2.2. Sequence comparison methods

The sequence comparisons were made with the following
programs: (i) BLAST version 2.2.13 of the BLAST program
[11] using a cutoff score of 25; (ii) the Smith-Waterman
algorithm as implemented in MATLAB [12]; (iii) the Needle-
man-Wunsch algorithm [13] as implemented in the needle
program of EMBOSS [14], using a gap opening penalty of 10
and a gap extension penalty of 0.5. (In i—iii the BLOSUM 62
matrix [15] was used.); (iv) the Local Alignment Kernel
program version 0.3 of Saigo and associates [16] was down-
loaded from http://cg.ensmp.fr/~vert/. The following run
parameters were used: default comparison matrix found in the
parameters.h file. Gap opening penalty=11 (default), Gap
extension penalty=1 (default), Scaling parameter=0.5.

Comparisons with compression distance functions were
calculated as described by Kocsor and associates [17], using the

LZW [18] or the PPMZ algorithms [19]. The LZW algorithm
was implemented in C, while the PPMZ2 algorithm was
downloaded from Charles Bloom’s homepage (http://www.
cbloom.com/src/ppmz.html).

2.3. Classifier algorithms

Nearest neighbor (INN) classification [20] is a simple
technique whereby a sequence is assigned to the a priori known
class of the database entry that was found most similar to it in
terms of a distance/similarity measure.

Support vector machines (SVMs) were used as described in
[5]. Sequence X was represented by a feature vector Fy=f.1, fr2,
... fn, Where n is the total number of proteins in the training set
and f,; is a similarity/distance score, such as the BLAST score,
the Smith—Waterman score or a compression-based distance
between X and the ith sequence in the training set. For the SVM
experiments we used the SVMlight software package [21] as
described by Liao and Noble [5].

The Logistic Regression (LogReg) is a variation of ordinary
regression which is used when the response variable is
dichotomous (i.e., it takes only two values, usually coded as —1
and 1) and the input variable is continuous, categorical or both. The
LogReg algorithm was used as implemented in the WEKA
software package ([22], Version 3.4.7, December 2005, down-
loaded from http://www.cs.waikato.ac.nz/ml/weka/).

The Random Forest (RF) technique uses a combination of
decision trees [23]. The script uses 10 trees and the number of
variables in each node is set to log(D+ 1), where D is the number of
inputs. The script uses the Random Forest library of R, written by
Andy Liaw and Matthew Wiener based on Breiman’s original
code. (http://cran.r-project.org/src/contrib/PACKAGES.html).

2.4. Evaluation of classifier performance

The evaluation was carried out by the standard receiver
operating characteristic (ROC) analysis [24]. This method is
especially useful for protein classification as it includes both
sensitivity and specificity, based on a ranking of the objects to be
classified [25]. In the case of INN classifications, the ranking
variable was the similarity or distance value calculated between
a query sequence and its nearest neighbor in the positive training
set. This scenario corresponds to one-class classification with
outlier detection. Briefly, the analysis is carried out by plotting

Table 3
Classification of SCOP95 sequences and structures used in this study
SCOP95 classes #Sequences #Families #Superfamilies #Folds
Total 11944 2834 1532 941
o 2141 607 375 218
B 3077 559 289 143
o/ 2801 629 222 136
a+p 2612 711 407 278
Multidomain 204 60 45 45
Membrane and 222 98 87 47
cell surface
Small 887 170 107 74



ftp://ftp.biochem.ucl.ac.uk/pub/cathdata/v3.0.0/
ftp://ftp.biochem.ucl.ac.uk/pub/cathdata/v3.0.0/
ftp://http://astral.berkeley.edu/.
ftp://http://astral.berkeley.edu/.
http://hydra.icgeb.trieste.it/benchmark
http://cg.ensmp.fr/~vert/
http://www.cbloom.com/src/ppmz.html
http://www.cbloom.com/src/ppmz.html
http://www.cs.waikato.ac.nz/ml/weka/
http://cran.r-project.org/src/contrib/PACKAGES.html

1218 A. Kertész-Farkas et al. / J. Biochem. Biophys. Methods 70 (2008) 12151223

Table 4

Classification of SCOP40 sequences and structures used in this study

SCOP40 #Sequences #Families #Superfamilies #Folds #+Test sequences #+Test families used
classes

Total 1357 291 24 22 771 55
a 258 102 5 4 85 8
B 377 65 6 5 226 15
a/p 679 113 11 11 445 30
a+p 23 5 1 1 10 1
Multidomain 20 6 1 1 5 1
Membrane and cell surface 0 0 0 0 0 0
Small 0 0 0 0 0 0

sensitivity vs. 1-specificity at various threshold values, then the
resulting curve was integrated to give an “area under curve” or
AUC value. If the evaluation procedure contains several ROC
experiments, one can draw a cumulative distribution curve of the
AUC values [5], or use the average of the individual AUC values
as performance indicator.

3. Results

A system capable of testing and comparing machine-learning
algorithms includes (i) datasets and classification tasks; (ii)
sequence/structure comparison methods; (iii) the classification
algorithms themselves, and (iv) a validation protocol. This work
is centered on the design of datasets and classification tasks, the
rest of the ingredients, including the datasets (protein
sequences, protein structures, protein coding DNA sequences)
and machine-learning algorithms (nearest neighbor analysis,
support vector machines, artificial neural network, random
forests and logistic regression) are described in the Materials
and methods section.

3.1. Random sampling vs. supervised classification: an example

In order to train a classifier algorithm, we need a database
subdivided into positive and negative groups. In the next step
we have to subdivide these two groups into test and train sets.
The result is a subdivision of the dataset into +train, +test, —train
and —test groups that will be used for training and testing a
classifier algorithm. We will term this fourfold subdivision a
classification task. In order to test a machine-learning method
on an entire database, we need to design classification tasks for
all possible classes of the dataset. We will term the ensemble of
the classification tasks a benchmark test.

Let us take first a classification task that illustrates the difference
between random and knowledge-based (supervised) subdivision

Table 5

Classification of CATH95 sequences and structures used in this study
CATHO9S classes #Sequences #H groups #T groups #A groups
Total 11373 1960 989 39

a 2672 628 279 5

B 3334 393 176 19

a—p 5107 839 445 14

fewSS 260 100 89 1

of the samples: the Lipocalin superfamily of the SCOP95 database
contains 58 sequences. These will be the positive set, while the rest
of the database will be the negative set. The evaluation will be
based on nearest neighbor classification, based on a Smith-
Waterman comparison. If we follow the traditional strategy of
machine learning, we can subdivide this set randomly. For
example, we can use each of the members as +test and use the rest
of the superfamily as positive train (leave-one-out strategy). Or we
can use, for instance a 5-fold cross-validation strategy where a
randomly chosen one fifth of the group is used as +test, and the
remaining four fifth will be +train. The negative set will subdivided
in an analogous way. One evaluation will consist of ROC/AUC
calculation (in which AUC=1 indicates perfect ranking of the
samples in terms of the Smith-Waterman score, AUC=0.5
corresponds to random ranking). As shown in Table 1, both of
these tests give rather high results, the AUC values are close to
1.00. However, if we divide the samples in a supervised manner,
i.e., according to the known subgroups (lines 3—4 of the table),
then we get substantially lower AUC values. The results can be
better understood if we look at the number of the subgroup
members included in the +test and +train groups (columns D and
E, respectively). In the two random subdivisions, the retinol-
binding and the fatty-acid-binding subgroups are included in both
the +test and the +train sets, so the comparison scores will be high.
In the supervised subdivisions, on the other hand, members of the
subgroups make part either of the +test or of the +train group, so
the comparison scores will be lower, resulting in lower AUC
values. The two supervised calculations thus refer to situations

Table 6
Distribution of proteins in benchmark tests defined on SCOP95 dataset

SCOP95 (1) Superfamilies (2) Folds divided (3) Classes divided
divided by families by superfamilies by folds
# +Test # +Test # +Test # +Test # +Test # +Test
sequences families sequences families sequences families
used used used
Total 4323 246 3901 650 10927 2187
o 614 43 522 145 1899 453
B 1507 55 1727 178 2921 466
a/B 1392 86 734 150 2675 557
a+p 503 41 583 134 2300 505
Multidomain 33 4 0 0 148 24
Membrane 0 0 27 5 167 62
and cell
surface

Small 274 17 308 38 817 120
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Table 7
Distribution of proteins in benchmark tests defined on CATH9S dataset

CATH95 (1) Homology groups divided

into sequence similarity groups by homology groups

(2) Topology groups divided

(3) Architecture divided
by topology groups

(4) Classes divided by
architecture groups

# +Test # +Test # +Test # +Test # +Test # +Test # +Test # +Test
sequences H-groups used sequences H-groups used sequences H-groups used sequences H-groups used
Total 1832 649 5288 1310 9938 1846 11103 1939
a 503 198 1277 403 2329 594 2590 617
p 498 134 1508 262 2896 360 3253 390
a—p 773 282 2370 578 4478 800 5009 833
fewSS 58 35 133 67 235 92 251 99

where we attempt to predict one subgroup based on the other one,
i.e., they estimate the generalization capability of a method on this
particular classification task.

3.2. Generalization to arbitrary classification hierarchies

Let us consider a database consisting of V (sequence or struc-
ture) objects Oy, O,, ... Oy with a proximity measure M(O;, O))
defined between the objects. A proximity measure is a common
term for similarity measures (e.g., sequence similarity scores,
association measures for feature vectors) and dissimilarity
measures (e.g., Euclidean distances of feature vectors). The
neighborhood K(O,, d,, d») of object O; is defined as a subset of
the other, remaining O; objects for which d; M(O;, O))d,, where d,
and d, are the limits of the object’s neighborhood. If d, =d>=d we
can simply write K(O;, d). The object neighborhood is thus a
partitioning of the database into neighbors and non-neighbors with
respect to an object O;. We can describe the neighborhood of a
group A in a similar fashion, provided we can define a proximity
measure between group 4 and the objects O; outside the group.
Since function M(O;, 0)) is either a similarity or a dissimilarity
measure, we can simply define M(4, O;) for any O; either as the
minimal distance or the maximal similarity between O; and any
member of 4. The group neighborhood is thus a partitioning of the
database into neighbors and non-neighbors with respect to a group
A. Following the above notational convention we denote the
neighborhood of a particular group 4 by K(4, d,, d>) and K(4, d).

Letus assume that a database consist of objects that are defined
according to terms arranged into a hierarchical classification tree.
Then the dataset can be regarded as a rooted tree that is a simple,
undirected, connected, acyclic graph. Moreover, it has one special
labeled node called a root, and if a node has only one edge it is
called a leaf. Denote D(e, f) the distance between node e and node
£, which is defined here as the number of edges on the shortest path
between e and f. The node distance of a node from the root is
called the depth of the node. We define the set of nodes at depth i —
or level i, denoted by L(i) — as consisting of nodes having the
same depth value. Formally, where e is a node and root is the root
node of the tree. We call a tree a balanced tree, if all the depth of
the leaves are the same, and this distance is called the height of the
tree, denoted by H. From now on when we mention a tree, we
always mean a balanced tree. Fig. 1 shows a typical example of a
balanced tree in which the leaves are the protein entries of the
database and the root of the tree is the database itself. Each of the
other nodes defines a subgroup of protein entries that are the leaves

connected to the given node. In this way the nodes in () represent
a partition of the database into disjoint groups labeled by the
categories at level i.

Using the tree hierarchy we can define group neighborhoods
by applying the D(e, f) distance as a proximity measure over
proteins (i.e., the leaves), which provides a supervised way to
partition the database.

In order to construct supervised classification tasks for a given
database, we need to know the subdivision at least two adjacent
hierarchical levels (e.g., superfamily/family). The + and — groups
are defined at the higher level (i), while the learning/test
subdivision is at the lower level (i+ 1).The principle is highlighted
in Fig. 1A, where we use the number of steps between two
proteins within the hierarchy, to define various subgroups. In the
figure, the positive sets are members of the same family, which are
2 steps away from each other. The members of the negative set are
on the other hand 4 steps away from any member of the positive
set. Because of its generality, this principle can be applied both to
other levels of this hierarchy as well as to other tree hierarchies.
The statistical description of a few such datasets is described in

L(1)
L(2)
L(3)

L)
L(5)

%cli:sim%e test, members of a family A

= i
positive train, complementer within superfamily, K(A,Jfl)

B —= -
inegative (a), complementer within fold, K(A,6) !
inegative(b), complementer within class, K(A, 6,8)

negative (c), complementer within database, K(A,6,10)
neighborhood

Fig. 1. Application of supervised cross-validation scheme to an arbitrary
classification hierarchy. (A) Definition possibilities for positive and negative sets
within a classification hierarchy. The hierarchy is a schematic and partial
representation of that of the SCOP database [9]. The positive set is defined at the
superfamily level, the +test and +train sets are defined at the underlying family level.
(B) The boundaries of the negative set can be fixed in terms of the number of steps
within the tree hierarchy, calculated with respect to the positive set 4. For instance,
K(A, 4) defines a neighborhood (a) whose members are 4 steps apart from the
members of group 4. For detailed explanations see Materials and methods.
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Tables 3, 4 (deposited as Supplementary information at the
database site).

Fig. 2 compares supervised and the random cross-validation
methods at various levels of the SCOP and CATH hierarchies.
The results show that the AUC values of random cross-
validation tests are substantially higher than the supervised
values, i.e., the qualitative picture obtained on the example
shown in Table 1 is in fact general to all the classification levels
of SCOP and CATH. At all levels of the hierarchies there is a
clear tendency in the ranking: leave-one-out test ~5-fold cross-
validation>knowledge based cross-validation. This tendency
indirectly explains why an excellent performance obtained with
random cross-validation techniques does not necessarily
guarantee good performance on sequences from new genomes,
in other words random cross-validation techniques may grossly
overestimate the predictive power of a method on new genomes.

The tendencies shown in Fig. 2 confirm the well-known fact
that the prediction at the lower levels of the hierarchy is more
efficient than at the higher levels [1]. It is also apparent that the
difference between the random and the supervised subdivision is
larger at the higher levels of the hierarchy, in spite of the fact that
the domain definitions and the hierarchies of SCOP and CATH are
different. On the other hand, the differences of the two databases
are reflected by the different shapes of the corresponding curves.

SCOP95 Smith-Waterman
L

CATH95 Smith-Waterman

——gm o
0'8-\\’
0.6

SF FO CL HO TO AR CL
SCOP95 Blast CATH95 BLAST

| Gt ST TIg--~-_.g-===F
0.8 0.8
SF FO CL HO TO AR CL
SCOP95 Pride CATH9S Pride

Hv-_-‘--"“_—_'

o= _
0.8 T —
0.6
SF FO CL HO TO AR cL
——+—— KB, ———— &dold: ---v--- L1O;

Fig. 2. The comparison of supervised and random cross-validation schemes on
the SCOP and CATH databases benchmark tests on the SCOP95 (left) and
CATH 95 (right) datasets conducted at various levels of the classification
hierarchy, using Smith-Waterman (top), BLAST (middle) for sequence
comparison and PRIDE (bottom) for structure comparison. Categories on the
X axis are the levels of the classification (In SCOP: SF: supefamilies; FO:
folds divided; CL; classes; In CATH: HO: homology groups; TO: topology
groups; AR; architecture groups; CL: classes), the Y axis shows the average
AUC in a benchmark test. KB=supervised (knowledge-based) (+); L10=(<{)
leave-one-out, 5-fold cross-validation (V). Note that the random subdivisions
give higher results than the supervised (knowledge-based) ones.

In the above calculations, we varied only the subdivision of
the positive set and kept the subdivision of the negative set
constant. Naturally one can also vary the way how the negative
test is subdivided (Table 2). For instance, subdivision by
superfamily means that members of a superfamily can be either
—train or —test. This subdivision corresponds to a hypothetical
situation where a newly sequenced genome contains only novel
superfamilies that have not been used for training. This is a
stringent test, since subdivision at the fold level would mean
that the new genome contains only novel folds, which is not a
likely event. Subdivision by sequence, on the other hand
corresponds to the random subdivision strategy employed in the
practice of machine learning. Table 2 shows that the
classification performance is not very sensitive to this choice,
even though a slight decrease of performance is seen as we
increase the stringency of the test.

3.3. Selecting negative datasets of manageable sizes

In a typical classification task described in the previous
sections, the positive sets consisted of 15 to a few hundred
sequence objects but the negative set was simply defined as “the
rest of the database”. In other words, the dataset was large and
imbalanced because of the size of the negative sets. Filtering the
negative set is a plausible idea and we compare three strategies
for doing this: (i) random subsampling of the negative set (10,
20 or 30%); (ii) selection of a nearest neighbors of the positive
group [26], based on a Smith-Waterman score; and (iii)
selection of the category neighbors. The latter is a supervised
selection, and the principle is shown in Fig. 1B. If the positive
set is a given superfamily, the negative set can be selected as
other superfamilies within the same fold (a), or other super-
families within the same class (b).

In the calculations summarized in Table 8, classification
performance was characterized by the average and the standard
deviation of 246 classification tasks defined on the SCOP
database. A higher performance is characterized by a higher
average and a lower standard deviation. The results show that
random subsetting of the negative group does not substantially
influence the classification performance either of the 1NN or of
the SVM classifiers. However, when we choose the nearest
neighbors according to the Smith-Waterman algorithm, there is
a decrease in the performance of the 1NN classifier but the
performance of the SVM classifiers remains roughly the same.
On the other hand, when we select the negative sets on the basis
of the classification hierarchy, both classifiers show a
performance decrease. The number of structural categories
present in the negative groups provides some insight into these
tendencies.

Selecting the nearest neighbors in terms of a Smith-
Waterman distance or in terms of structural hierarchy sharply
reduces the number of structural categories present in the
negative set. The second method also produces very small
datasets. As a result of these two factors, the negative sets will
be too specific, i.e., they may be less representative with respect
to the entire database. Based on the above results, random
filtering of the negative sets seems to be the most sensible
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Table 8

Dependence of classifier performance and the subgroup composition on the selection of the negative set (SCOP95 dataset, Smith-Waterman score)

Size of INN SVM Number® of

negative AUC+SD® Families Superfamilies Folds Classes
set (%)

Full negative set (11162—11929 sequences)

100 0.8352+0.17 0.8641+0.15 2824 (2779-2832) 1531 (1531-1531) 941 (940-941) 7
Random selection®

10 0.8352+0.13 0.8865+0.17 734 (700-764) 520 (480-552) 369 (341-395) 7

20 0.8351+0.14 0.8776+0.17 1182 (1124-1223) 770 (728-810) 514 (480-553) 7

30 0.8353+0.17 0.8754+0.14 1522 (1458-1572) 943 (902-983) 609 (577-637) 7
Nearest neighbor selection

10 0.5836+0.32 0.8738+0.19 452 (383-559) 270 (226-347) 205 (164-265) 6or7
20 0.6410+0.23 0.8954+0.16 810 (727-940) 438 (384-536) 328 (280—-403) 6or7
30 0.7389+0.28 0.8880+0.17 1136 (1038-1287) 595 (529-717) 434 (390-510) 6or7
Supervised selection (knowledge based)

A 09+1.3 0.7083+0.21 0.7651+0.19 26 (2-79) 11 (1-30) 1

B 20.8+4.8 0.7571+0.18 0.8664+0.14 558 (165-705) 287 (106-406) 1

? AUC values were calculated for the 246 classification tasks defined on the SCOP95 dataset. The results were calculated as the average and standard deviation (SD)
of the AUC values. The random selection was repeated 10 times, and the SD value is the average of the 10 calculations.

® The numbers indicate average (minimum—maximum) within the classifier tasks.

¢ The negative sets (11,162—11,929 sequences) were subdivided into roughly equal —train and —test groups in such a way that members of a given family were either train

or test.
4 The given percentage of the —train and —test set was selected randomly.

¢ The members of the —test and —train sets were ranked according to their highest Smith-Waterman score with respect to the +train group, and the closest sequences

corresponding to the given percentage were selected.

f The selection was based on the ranges indicated by panels (a) and (b) in Fig. 1.

compromise, since the classification performances remain close
to those of the original dataset, and the number of structural
categories is higher than in the case of the other two methods.

Finally we mention that the difference between the behavior
of INN and SVM in these calculations may be due to the fact
that the ROC analysis of the INN is based on a one-class
scenario (outlier detection), whereas the performance of SVMs
is evaluated with respect to a decision surface separating the
+train and —train classes.

3.4. Comparison of learning algorithms using various
similarity/dissimilarity measures

We selected a number of popular similarity/distance
measures and learning algorithms for the comparisons summa-
rized in Tables 9-11. We used datasets selected so as to

Table 9
SCOP40 mini-dataset (superfamilies, subdivided into families): comparison of
distance measures and machine learning algorithms

INN RF SVM ANN LogReg
BLAST 0.7577 0.6965 0.9047 0.7988 0.8715
SW 0.8154 0.8230 0.9419 0.8875 0.9063
NW 0.8252 0.8030 0.9376 0.8834 0.9175
LA 0.7343 0.8344 0.9396 0.9022 0.8766
LZW 0.7174 0.7396 0.8288 0.8346 0.7487
PPMZ 0.5644 0.7253 0.8551 0.8254 0.8308
PRIDE 0.8644 0.9105 0.9361 0.9073 0.9029
DALI 0.9892 0.9941 0.9946 0.9897 0.9636

represent different types of classification problems. The 3PGK
dataset consists of the sequences of the ubiquitous enzyme 3-
phosphoglycerate kinase, grouped into superkingdoms (Ar-
chaea, Bacteria and Eukaryota), each subdivided into phyla as
described in [27,28]. In this dataset the sequence similarities
within the groups (i.e., between members of the same super-
kingdom) are relatively high and between the groups (between
members of different superkingdoms) are also relatively high.
The situation is different in the SCOP95 database, where both
the within-group and the between-group sequence similarities
are relatively low. Finally the SCOP40 dataset is even more
difficult since here sequences more similar to each other than
40% are represented by a single prototype sequence.

Tables 9—11 summarize the classification performance data
obtained with the various methods (columns) and various
sequence/structure comparison algorithms (rows). We mention
that because of time constraints some of the comparison
algorithms (PPMZ, DALI) were not calculated for the biggest

Table 10
SCOP95-10 dataset (superfamilies, subdivided into families): comparison of
distance measures and machine learning algorithms

INN RF SVM ANN LogReg
BLAST 0.6985 0.6729 0.7293 0.5703 0.7218
SW 0.8354 0.8645 0.8884 0.8607 0.8574
NW 0.8390 0.8576 0.8910 0.8393 0.8607
LA 0.7884 0.8823 0.8717 0.9002 0.8718
LZW 0.7830 0.8208 0.8402 0.7851 0.7574
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Table 11
3PGK dataset (superkingdoms divided into phyla): comparison of distance
measures and machine learning algorithms

INN RF SVM ANN LogReg
(A) Protein sequences
BLAST 0.8633 0.8517 0.9533 0.9584 0.9537
SwW 0.8605 0.8659 0.9527 0.9548 0.9476
NW 0.8621 0.8548 0.9542 0.9547 0.9494
LA 0.8596 0.8755 0.9549 0.9564 0.9593
LZW 0.7833 0.8463 0.9242 0.9278 0.9154
PPMZ 0.8117 0.9152 0.9476 0.9597 0.9398
(B) DNA sequences
BLAST 0.7358 0.8244 0.8102 0.8077 0.7691
SW 0.8864 0.8674 0.9630 0.9698 0.9772
NwW 0.8437 0.8959 0.9455 0.9433 0.9612
LA n/a n/a n/a n/a n/a
LZW 0.7143 0.7107 0.8343 0.8297 0.7844
PPMZ 0.7336 0.7662 0.7881 0.7918 0.8612

datasets. The results show a sufficiently clear tendency: the
ranking of the machine-learning methods is roughly the same on
all datasets, i.e., usually SVM gave the best performance closely
followed by ANN and LogReg. We mention that this ranking
does not refer to the potentials or the optimum performance of
the machine-learning algorithms, it rather reflects their actual
performance obtained with the default settings employed here.

On the other hand, the ranking of the similarity—dissimilarity
measures shows some variation between the datasets. In general
we see the expected trend, i.e., the 3D comparison algorithms
are better that sequence-based methods, and exhaustive
methods (Smith-Waterman, Needleman-Wunsch) perform bet-
ter than heuristic algorithms (BLAST). On the other hand,
BLAST performs slightly better than Smith-Waterman on the
3PGK DNA sequences. These variations are in a way expected,
knowing that the within-group and between-group similarities
are different in the various datasets.

4. Discussion

Supervised cross-validation is a strategy that allows one to
estimate the capability of an algorithm to recognize novel
subtypes of known categories. As novel protein types abound in
newly sequenced genomes, generalization capability of an
algorithm is crucial for genome annotation.

One can design classification tasks in a supervised way if
there are known subclasses within the classes to be studied. If
the categories are hierarchically organized, one can define clas-
sification tasks at various levels of the hierarchy. Here we des-
cribed a number of such classification tasks that vary in the
degree of difficulty and characterized them using a number of
comparison methods (e.g., BLAST, Smith-Waterman, Needle-
man-Wunsch, as well as 3D comparison methods) as well as clas-
sifier algorithms (nearest neighbor, support vector machines,
artificial neural networks, etc.). Even though the results vary from
dataset to dataset, the ranking on machine-learning algorithms is
grossly consistent on all the datasets. On the other hand, the
ranking of the comparison algorithms appears to be more dataset-

dependent, and there is a large variation between the individual
groups of the same dataset. So the final evaluation of an algorithm
should be made on the groups of real-life datasets.

The protein data (sequences, 3D structures, reading-frame
DNA sequences) as well as several precomputed similarity/
distance matrices are now deposited into a recently established,
publicly available data collection that also includes evaluation
results (ROC/AUC values) for several classifier algorithms [1].
Based on the results of the present works we added to the
collection 14 new, reduced size datasets (with a total of 3042
new classification tasks) that may facilitate the use by the
pattern matching community. We hope that these datasets will
be useful for method developers as well as for users interested in
assessing the performance of various methods.

5. Simplified description of the method

We present a method for testing the generalization capability of
protein classification algorithms. It consists in building a set of
classification tasks (+train, +test, —train, —test groups) for a protein
database that has a category hierarchy (such as protein domains
databases, protein family databases, phylogenetic hierarchies etc.).
The subdivision — termed supervised cross-validation — is based
on two successive classification levels, the + and — groups are
defined at the higher level (i), while the learning/test subdivision is
at the lower level (i+1). Datasets of manageable sizes suitable for
testing/developing machine-learning algorithms can then be
designed by randomly selecting a smaller (say 10 or 20%) subset
from the negative sets.

Randomly subdivided test datasets routinely used by the
machine-learning community give erroneously good results for
protein classification which overestimate predictor performance
on new genomic data. The method described here allows one to
get a realistic estimate regarding a predictor’s performance with
respect to novel data and is applicable essentially to any datasets
wherein the objects are classified in a hierarchical manner.
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