
Chapter 4
The Application of Data Compression-Based
Distances to Biological Sequences

Attila Kertész-Farkas, András Kocsor, and Sándor Pongor

Abstract Text compressor algorithms can be used to construct metric distance mea-
sures (CBDs) suitable for character sequences. Here we review the principle of var-
ious types of compressor algorithms and describe their general behaviour with re-
spect to the comparison of protein and DNA sequences. We employ reduced and
enlarged alphabets, and model biological rearrangements like domain shuffling. In
the classification experiments evaluated with ROC analysis, CBDs perform less well
than substring-based methods such as the BLAST and the Smith–Waterman algo-
rithms, but perform better than distances based on word composition. CBDs out-
performed substring methods with respect to domain shuffling, and in some cases
showed an increased performance when the alphabet was reduced.

4.1 Introduction

The term biological sequence denotes the most characteristic data type used in bi-
ology today. Data on the structure of genes and proteins is collected and stored in
the form of long character sequences, written in a four-letter alphabet for DNA and
in a 20-letter alphabet for proteins. The collection, organisation and computational
analysis of sequence databanks is one of the main tasks of bioinformatics. The clas-
sification of sequence data is at the heart of this work, since the annotation of raw
sequence data is primarily based on similarity searches against existing databanks,

A. Kertész-Farkas (�) and A. Kocsor
Research Group on Artificial Intelligence, Aradi vértanúk tere 1, 6720 Szeged, Hungary
e-mail: kfa@inf.u-szeged.hu, kocsor@inf.u-szeged.hu

S. Pongor
Protein Structure and Bioinformatics Group, International Centre for Genetic Engineering and
Biotechnology, Padriciano 99, 34012 Trieste, Italy and Bioinformatics Group, Biological Research
Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6701 Szeged, Hungary
e-mail: pongor@icgeb.org

F. Emmert-Streib, M. Dehmer (eds.), Information Theory and Statistical Learning, 83
DOI: 10.1007/978-0-387-84816-7 4,
c© Springer Science+Business Media LLC 2009

84 A. Kertész-Farkas et al.

whereby a new sequence is assigned to one of the known classes (similarity groups).
In order to accomplish this task, one needs sequence similarity measures that reflect
the similarity of two sequences a realistic way.

Sequence similarity measures which are currently used fall into two main cate-
gories [2]. One of them is based on shared common substrings that are determined
by approximate string matching heuristics, such as the well-known BLAST program
[3], and dynamic programming methods like the Smith–Waterman algorithm [31].
The other class includes variants of n-gram distances whereby a sequence is first
represented as a vector of n-gram word counts (e.g. character doublets, triplets and
so on), and then compared in terms of an Euclidean distance or some other vector
similarity measure [35]. Even though it is less efficient than a substring similarity
search, n-gram methods are frequently included as fast screening tools into genome
annotation pipelines.

The interest in compression-based methods was fostered by Vitnyi et al.’s sem-
inal paper in which they proved that a simple index of sequence compressibility
is actually better than n-gram techniques. Compression-based methods were soon
employed in protein sequences as well [22], and it was also shown that different
compressors perform differently on various sequence data [16].

The aim of the present work is to characterise compression algorithms with re-
spect to two salient problems: invariance to biological changes and the resolution
of sequence representations (alphabet size). In general, a similarity measure is ex-
pected to be invariant with respect to certain changes. For instance, the similarity of
3D shapes should be invariant with respect to the position of the objects; the sim-
ilarity of melodies should be invariant to the pitch, the similarity of uttered words
should be independent of the speaker, and so on. By the same token, we should
expect that a similarity measure of biological sequences remain invariant with re-
spect to a certain set of evolutionary events. Two of these are noteworthy: (1) Point
mutations – sequences differing in only a few mutations should remain similar in
the mathematical sense. This can be characterised by classification experiments fol-
lowed by a ROC analysis [22]; (2) Major rearrangements can occur in the evolution
of protein families. For instance, large segments of proteins can be displaced through
a process called “domain shuffling”. It is a moot question whether or not, or to what
extent, rearranged sequences maintain similarity. This question can be studied by
producing artificially rearranged sequences and comparing them with the various
similarity measures [22].

The question of alphabet size is not merely one of technical interest. Re-
duced/enlarged alphabets are often used by bioinformaticians to represent protein
and DNA sequences, but there is no systematic data telling us whether these really
influence our ability to distinguish or classify biological sequences. Since the speed
and memory requirements of compression algorithms depend on the algorithm’s
size, it would be interesting to see whether or not the classification efficiency of
compression algorithms depends on this variable. And of course, all of these effects
may depend on how closely the sequences are related.

In the next section we will provide a short introduction to the notion of the Kol-
mogorov Complexity-induced Information Metric as well as a description of the

4 The Application of Data Compression-Based Distances to Biological Sequences 85

various compressor types used in our experiments. In Sect. 4.3 we will describe the
experiments with our conclusions drawn for them. Finally, in Sect. 4.4 we will sum-
marise our findings and draw some conclusions.

4.2 Definitions and Methods

The notion of an information distance between two discrete objects is the quantity
of information in an object in terms of the number of bits needed to reconstruct the
other. This notion arises from the theory of the thermodynamics of computation,
which was first mentioned in [27, 39] and in [30] in the context of image similarity.
Later, an introduction with related definitions and theory was published in [5] in
1998. More formal definitions, theory and related details can be found in [26].

4.2.1 Information Distance

A distance function D is a positive real-valued function defined on the Cartesian
product of an arbitrary set X . It is also called a metric on X if it satisfies the following
so-called metric properties:

• Non-negativity and identity: D(x,y)≥ 0 and D(x,y) = 0 iff x = y
• Symmetry: D(x,y) = D(y,x)
• Triangle inequality: D(x,z)≤ D(x,y)+D(y,y)

for every x,y,z ∈ X . These metric properties not only provide a useful characterisa-
tion of distance functions that satisfy them, but a metric function is also good as a
reliable distance function.

Strings: Any finite object can be represented by binary strings without loss of gen-
erality (w.l.o.g). For example any genome sequence, arbitrary number, program rep-
resented by its Gödel number, image, structure, and term can be encoded by binary
strings. Here, the string x is a finite binary string and its length is defined in the usual
way and will be denoted by l(x). An empty string will be denoted by ε and its length
l(ε) = 0. The concatenation of x and y will be simply denoted by xy. A set of strings
S ⊆ {0,1}∗ is called a prefix-free set if any string member is not a prefix of another
member. A prefix-free set has a useful characterisation, namely it satisfies the Kraft
inequality. Formally, for a prefix-free set S, we have

∑
x∈S

2−l(x) ≤ 1. (4.1)

An important consequence of this property is that in a sequence s1s2 . . .sn (si ∈ S)
the end of string si is immediately recognizable; that is, the concatenation of
strings can be separated by commas into codewords without looking at subsequent

86 A. Kertész-Farkas et al.

symbols. This sort of code is also called self-punctuating, self-delimiting or instan-
taneous code.

Kolmogorov Complexity: A partial recursive function F(p,x) is called a prefix com-
puter if for each x, the set {p | F(p,x) < ∞} is a prefix-free set. The argument p is
called a prefix program because no punctuation is required to tell F where p ends
and the input to the machine can be simply the concatenation px. The conditional
Kolmogorov Complexity of the string x with respect to (w.r.t.) y, with prefix com-
puter F , is defined by

KF(x | y) = min{l(p) | F(p,x) = y}. (4.2)

When such a p does not exist, its value is infinite. The invariance theorem states that
there is a universal or optimal prefix computer U for every other prefix computer F
and for any x,y such that

KU (x | y)≤ KF(x | y)+ cF , (4.3)

where cF depends on F but not on x,y. This universal computer U is fixed as the
standard reference, and we call K(x | y) = KU (x | y) the conditional Kolmogorov
Complexity of x w.r.t. y; moreover, the unconditional Kolmogorov Complexity of
a string x is defined by K(x | ε). The Kolmogorov Complexity of x w.r.t. y is the
shortest binary prefix program that computes x with additional information obtained
from y. However, it is non-computable in the Turing sense; that is, no program exists
that can compute it in practice since it can be reduced to the halting problem [26].

Information Distance: With the information content, the information distance be-
tween strings x and y is defined as the length of the shortest binary program on the
reference universal prefix computer with input y, which computes x and vice versa,
formally:

ID(x,y) = min{l(p) |U(p,x) = y, U(p,y) = x}. (4.4)

This is clearly symmetric, and it has been proven that it satisfies the triangle in-
equality up to an additive constant. ID can be computed by reversible computations
up to an additive constant, but there is an easier but weaker approximation of ID. It
has been shown that ID, up to an additive logarithmic term, can be computed by the
so-called max distance E:

E(x,y) = max{K(x | y),K(y | x)}. (4.5)

In general, the “up to an additive logarithmic term” means that the information re-
quired to reconstruct x from y is always maximally correlated with the information
required to reconstruct y from x that is dependent on the former amount of informa-
tion. Thus E is also a suitable approximation for the information distance.

Density, Universality and Metric Properties: In a discrete space with a distance
function D, the rate of growth of the number of elements in balls of size d, centred at
x, denoted by #BD(x,d), can be considered as a certain characterisation of the space.
For example, the distance function D(x,y) = 1 for all x �= y is not a realistic distance

4 The Application of Data Compression-Based Distances to Biological Sequences 87

function, but it satisfies the triangle inequality. As for the Hamming distance, H,
#BH(x,d) = 2d , hence it is finite. For a function D to be a realistic distance function
it needs to be satisfy the so-called normalization property:

∑
y:y�=x

2−D(x,y) ≤ 1. (4.6)

This holds for the information distance E(x,y) and also for ID because they both
satisfy the Kraft inequality. Moreover,

log(#BE(x,d)) = d−K(d | x) (4.7)

up to an additive constant. This means that the number of elements in the ball
BE(x,d) grows exponentially w.r.t. d up to an additive constant. In addition, a
more complex string has fewer neighbours and this has been shown by the theo-
rem “tough guys have few neighbours thermodynamically” [27]. E is universal (up
to an additive error term) in the sense that it is smaller than every other upper-semi-
computable function f which satisfies the normalization property. That is, we have

E(x,y)≤ f (x,y)+O(log(k)/k), (4.8)

where k = max{K(x),K(y)}. This seems quite reasonable, as we have greater time
to process x and y, and we may discover additional similarities between them; then
we can revise our upper bound on their distance. As regards semi-computability,
E(x,y) is the limit of a computable sequence of upper bounds.

The non-negativity and symmetry properties of the information distance E(x,y)
are a consequence of the definition, but E(x,y) satisfies the triangle inequality only
up to an additive error term [5].

Compression-Based Distances: The non-normalized information distance is not a
proper evolutionary distance measure because of the length factor of strings. For a
given pair of strings x and y the normalized information distance is defined by

D(x,y) =
max{K(x | y),K(y | x)}

max{K(x),K(y)} . (4.9)

In [25] it was shown this satisfies the triangle inequality and vanishes when x = y
with a negligible error term. The proof of its universality was given in [24], and
the proof that it obeys the normalization property is more technical (for details, see
[12, 25]).

The numerator can be rewritten in the form max{K(xy)−K(x),K(yx)−K(y)}
within logarithmic additive precision due to the additive property of prefix Kol-
mogorov complexity [12]. Thus we get

D(x,y) =
K(xy)−min{K(x),K(y)}

max{K(x),K(y)} . (4.10)

88 A. Kertész-Farkas et al.

Since the Kolmogorov complexity cannot be computed, it has to be approxi-
mated, and for this purpose, real file compressors are employed. Let C(x) be the
length of the compressed string compressed by a particular compressor like gzip or
arj. Then the approximation for the information distance E can be obtained by using
the following formula:

CBD(x,y) =
C(xy)−min{C(x),C(y)}

max{C(x),C(y)} . (4.11)

A CBM is a metric up to an additive constant and satisfies the normalization property
if C satisfies the following properties up to an additive term:

• Idempotency: C(xx) = C(x)
• Symmetry: C(xy) = C(yx)
• Monotonicity: C(xy) ≥C(x)
• Distributivity: C(xy)+C(z)≤C(xy)+C(xy)

The proof can be found in Theorem 6.2 of [12]. A compressor satisfying these
properties is called a normal compressor.

There is no bound for the difference between the information distance and its ap-
proximation; that is, |E −CBD| is unbounded. For example, the Kolmogorov com-
plexity of the first few million digits of the number π , denoted by pi, is a constant
because its digits can be generated by a simple program but C(pi) is proportional to
l(pi) for every known text compressor C.

4.2.2 Data Compression Algorithms

In computer science, the purpose of data compression is to store the data more eco-
nomically without redundancy, and it can be compressed whenever some events are
more likely than others. In general, this can be done by assigning a short descrip-
tion code to the more frequent patterns and a longer description code to the less
frequent patterns. If the original data can be fully reconstructed, it is called loss-
less compression. If the original data cannot be exactly reconstructed from those
descriptions, it is known as lossy compression. This form is widely used in the area
of image and audio compression because the fine details can be removed without
being noticed by the listeners. If a set of codes S satisfies the Kraft inequality, it is
a lossless compression and it is a prefix-free set; conversely, if it does not satisfy
the Kraft inequality, it is a lossy compression and it is not a prefix-free set. None
of data or text string can be losslessly compressed to an arbitrary small size by any
compression method. The limit of the compression process that is needed to fully
describe the original data is related to Shannon entropy or to the information content
[13]. A good collection of compressors and their related descriptions are available
at http://datacompression.info/. Now, we will briefly describe the compressors used
in our experiments.

4 The Application of Data Compression-Based Distances to Biological Sequences 89

Adaptive Huffman (Dynamic Huffman Coding): Here, the assumption is that the
sequence is generated by a source over a d-ary alphabet D over a probability dis-
tribution P; that is, for each x ∈ D, the p(x) is the probability of the letter x and
∑x∈D p(x) = 1. Let C(.) be a source code and C(x) be the codeword associated with
x, and for ease of notation, l(x) let stand for l(C(x)), the length of the codeword. It
should be demanded that C is non-singular; that is, x �= y→C(x) �=C(y) and it gives
a prefix-free set. The expected length L(C) of a source code is defined by

L(C) = ∑
x∈D

p(x)l(x). (4.12)

The Huffman coding is the optimal source coding; that is

L∗ = min
C
{L(C)}, (4.13)

subject to C satisfying the Kraft inequality. Solving this constrained optimization
problem using Lagrange multipliers yields optimal code lengths l∗ = − logd p(x).
The non-integer choice of codeword length gives L∗ = H(P), that is, the length of
the optimal compression of data is equal to the Shannon entropy of the distribution
P of the codewords. Moreover, for integer codeword length, we have H(P) ≤ L∗ ≤
H(P)+1 and the codes can be built by a method like Shannon–Fano coding [13].

In practice, the key part of the Huffman coding method is to assess the probability of
letter occurrence. The adaptive Huffman coding constructs a code when the symbols
are being transmitted, having no initial knowledge of the source distribution, which
allows one-pass encoding and adaptation to changing conditions in the data. For
our experiments we used http://www.xcf.berkeley.edu/∼ali/K0D/Algorithms/huff/

Lempel–Ziv–Welch (LZW): It is a one-pass stream parsing algorithm that is widely
used because of its simplicity and fast execution speed. It divides a sequence into
distinct phrases such that each block is the shortest string which is not a previously
parsed phrase. For example, let x = 01111000110 be a string of length 11, then
the LZW compressor C(x) produces six codes: 0,1,11,10,00,110, thus l(C(x)) = 6.
Here, the assumption is that sequences are generated by a higher but finite order sta-
tionary Markov process P over a finite alphabet. The entropy of P can be estimated
by the formula n−1C(x) log2 C(x) and the convergence is almost guaranteed as the
length of the sequence x tends to infinity. In practice, a better compression ratio can
sometimes be achieved by LZW than Huffman coding because of this more realistic
assumption. Here we used our own implementation of the original LZW algorithm.

GenCompress (GC): This was developed for the compression of large genomes
by exploiting hidden regularities and properties in them, such as repetitions and
mutations. The main idea will now be described. First, let us consider a genome
sequence x = uv and suppose that its first portion u has already been compressed.
Find the largest prefix v′ of v with an edit distance method such that it is max-
imally partial matched by a substring u′ in u that has minimal edit operations
needed to obtain v′ from u′. After, only the position of u′ and the edit opera-
tions list is encoded by Fibonacci coding. GenCompress is a one-pass algorithm

90 A. Kertész-Farkas et al.

and it is the state-of-the-art compression method for genomic sequences. How-
ever, it is not fast in practice because its performance is more important so it is
recommended for offline computations [11]. We downloaded this program from
http://www.cs.cityu.edu.hk/∼cssamk/gencomp/GenCompress1.htm

Prediction by Partial Matching (PPM): PPM is an adaptive statistical data com-
pression technique that uses context tree to record the frequency of characters within
their contexts. Then it predicts the next symbol in the stream using arithmetic cod-
ing (AC) to encode an event with an interval that is assigned to the event w.r.t.
their distribution, and the codeword is the shortest binary number from this interval.
A more likely event has a correspondingly longer interval, and thus a shorter code-
word can be selected [36]. In our experiments we used the implementation from
http://compression.ru/ds/.

Burrows–Wheeler Transform (BWT): While BWT is not a compressor method, it
is closely related to data compression and is used as a pre-processing method to
achieve a better compression ratio. It is a reversible block-sorting method that pro-
duces all n-cyclic shifts of the original sequence then orders them lexicographically
and outputs the last column of the sorted table as well as the position of the original
sequence in the sorted table [8]. This procedure brings groups of symbols with a
similar context closer together and these segments can be used to better estimate the
entropy of a Markov process [9]. The implementation that we used was downloaded
from http://www.geocities.com/imran akthar/files/bwt matlab code.zip.

Advanced Block-Sorting Compressor (ABC): This compressor contains several ad-
vanced compression techniques like BWT, run length encoding, AC, weighted fre-
quency count and sorted inversion frequencies. For details, see [1]. The compression
speed is approximately half that of GZIP and BZIP2. This program was downloaded
from http://www.data-compression.info/ABC/

4.3 Experiments and Discussion

In this section we will describe several experiments that were carried out to deter-
mine how CBDs can exploit the similarity among sequences, from different points
of view. Where possible, the Smith–Waterman (SW) and the BLAST alignment-
based sequence comparison methods as well as the naive distance were evaluated
for comparison. The BLAST version 2.2.4 was used with a cutoff score of 25 and
the SW algorithm used was implemented in MATLAB with the BLOSUM 62 ma-
trix [19]. In both cases the gap opening and extension parameters were set to their
default values. The naive distance between protein sequences was simply the Eu-
clidean distance of a vector bi-gram counts of sequences.

4 The Application of Data Compression-Based Distances to Biological Sequences 91

4.3.1 Experiments on Compressor Properties

In our first experiments, we examined how well each compressor satisfies the
properties of a normal compressor. To do this, we chose the SCOP40 (40% identity)
database. The sequences were taken from the SCOP database 1.69 [4] and were
downloaded from the ASTRAL site (http://astral.berkeley.edu/). Fifty-three non-
contiguous domains were discarded and from the remaining 7,237 entries protein
families that had at least five members, and at least 10 members outside the fam-
ily but within the same superfamily were selected. Altogether, we collected 1,357
sequences. This database is available at http://net.icgeb.org/benchmark/ [32]. The
average length of the sequences was 194 characters with a relatively high standard
deviation of 116. Table 4.1 illustrates how each compressor satisfies the normality
properties. In practice, the monotonicity is obeyed for stream-based compressors
and only slightly less evident for block-coding types. The distributivity property
appears to be satisfied in each case. Symmetry is not precisely obeyed for stream-
based compressors and CBDs become slightly asymmetric; however, in practice, the
difference |CBD(x,y)−CBD(y,x) | is quite small. A compressor should search ex-
act repetitions and obey idempotency, but in practice this seems to the most difficult
condition for compressors and thus CBDs do not vanish when x = y.

4.3.2 Invariance Experiments on Rearranged Sequences

Protein evolution often includes rearrangements such as the gain or loss of domains
and circular permutations. Therefore the question arises of whether or not CBDs
can detect the differences between the products. To answer this, we used the C1S
precursor (Swiss-Prot ID: C1S HUMAN, AC:P09871), a multi-domain protein of

Table 4.1 Results of compressors’ properties on SCOP40

Compressor Length C(x)a Idempontecy |C(xx)−C(x) | Symmetryb |C(xy)−C(yx) |

avg. std. #violc avg.d std.e #violc avg.d std.e

ABC 142 66.26 1,357 15.98 5.95 845,808 1.07 0.27
AH 121 63.01 1,357 100.84 61.55 1,240,000 1.38 0.62
LZW 154 78.99 1,357 92.31 52.52 1,570,000 2.63 1.70
GC 143 73.79 1,357 4.93 0.80 7,968 1.61 0.76
PPM 160 70.25 1,357 5.46 1.24 1,260,000 1.49 0.79

aThe average length of the original sequences was 194 characters with a standard devi-
ation of 116
bThe total number of test cases was 1,841,450
cThe number of cases when the compressor violated the condition
dThe average bias
eThe standard deviation of the bias
With these compressors acting on this dataset, the distributivity and monotonicity prop-
erties were not violated.

92 A. Kertész-Farkas et al.

Table 4.2 The effect of sequence rearrangements on the various similarity/distance measures
on C1S

ABC AHc GC LZW PPM SW

score %b score % score % score % score % score %

Itself 0.088 0 0.939 0 0.013 0 0.646 0 0.020 0 1,895 0
(ABCB′DD′E)a

Duplication of C 0.179 11 0.945 −284 0.051 4 0.661 13 0.059 5 1,804 5
(ABCCB′DD′E)
Deletion of C 0.226 17 0.941 −107 0.115 11 0.663 14 0.121 12 1,673 12
(ABB′DD′E)
Deletion of CB′ 0.435 43 0.939 0 0.272 28 0.701 47 0.261 28 1,305 31
(ABDD′E)
Circular permut. 0.157 9 0.941 −107 0.062 5 0.665 16 0.072 6 966 50
(D′EABCB′D)
Reverse order 0.222 17 0.945 −249 0.082 7 0.665 16 0.075 6 679 65
(ED′DB′CBA)
Duplication 0.142 7 0.970 −1,294 0.013 0 0.743 82 0.024 0 1,895 0
(2×ABCB′DD′E)
Random shuffled 0.891 100 0.963 100 0.954 100 0.763 100 0.868 100 19 100

aSwiss-Prot AC = P09871, A = Signal peptide (res. 1–15), B, B′ = CUB domains (res. 16–130, 175–
290, respectively), C = EGF domain (res. 131–172), D,D′ = Sushi domains (res. 292–356, 357–423,
respectively), E = Peptidase S1 (res. 438–688)
bScore of C1S with itself = 0%, score of C1S with randomly shuffled C1S = 100%
cAH gives abnormal percent values because the distance to itself and to its randomly shuffled
sequence are similar.

688 residues consisting of a signal peptide (A), two CUB domains (B,B′), a EGF
domain (C), two SUSHI domains (D,D′) and a trypsin-like catalytic domain (E) that
is post-translationally cleaved from the precursor. The domain architecture of the
native protein can be written as ABCB′DD′E and a hypothetical circular permutant
can be written as DD′EABCB′. The results in Table 4.2 show that a reshuffling of
the domains does not substantially affect the CBDs. Comparing the C1S precursor
with its reshuffled counterparts in which the domain order is reversed, gives a PPM
distance of 0.075, while the C1S compared to itself gives a value of 0.020 (The
respective SW score values are 679 and 1,895; there is a substantial difference). In
addition, the circular permutation of a long sequence has a smaller effect on the
compression distance than on the SW score. This property of a CBM may be useful
when looking for similarities between rearranged sequences.

4.3.3 The Effect of Alphabet Size

Here we examined the sensitivity of CBDs to sequence manipulation, such as
alphabet reduction and expansion. To do this, we chose a set of 131 sequences rep-
resenting the essentially ubiquitous glycolytic enzyme, 3-phosphoglycerate kinase
(3PGK). The sequences are available both as amino acid residues (358–505 residues

4 The Application of Data Compression-Based Distances to Biological Sequences 93

in length) and nucleotide residues (1,074–1,515) obtained from 15 archaean (con-
sisting of 2 phyla), 83 bacterial (consisting of 3 phyla) and 33 eukaryotic species
(consisting of 5 phyla). The dataset is freely available [32].

Experiment: An alphabet reduction was evaluated just on amino acids in such way
that they were grouped into different groups and each amino acid residue was re-
placed by its group identifier. The Dayhoff classes (“AGPST, DENQ, HKR, ILMV,
FWY, C”) were obtained from [14] and here are referred to as Dayhoff6. Other
classes were taken from Table 1 of [33] and were denoted by SB4, SB6, SB8, SB12,
and SB16, respectively. The number in the class name denotes the number of amino
acid clusters. The alphabet expansion was the residue composition; that is, each
bi-gram and tri-gram was considered as a single letter yielding an alphabet with
number of elements n2 and n3, respectively, where n is the number of a certain al-
phabet. In DNA sequences it provided an alphabet of 16 or 64 letters, respectively.
In amino acid sequences, with a reduced alphabet, we applied this on alphabets SB4,
SB6, SB8 and Dayhoff6 classes. The BWT transformation was also evaluated on the
original amino acid and nucleotide sequences to see how well it supports compres-
sion performance. However, the GenCompress (GC) algorithm was not evaluated
on sequences obtained by alphabet expansion because it was originally developed
for genome sequences and not for strings of arbitrary characters and alphabets.

Evaluation: To evaluate how well a distance matrix reflects the groups, the ROC
analysis [17] was used in the following way. The similarity of two proteins was
used as the score of a binary classifier, putting them into the same group such as
kingdom and phylum, denoted by AUC-kingdom and AUC-phylum, respectively.
Next, the ROC analysis was performed by plotting sensitivity versus 1-specificity
at various threshold values, and the resulting curve was integrated to give an “area
under the curve” (AUC) value. For a perfect ranking AUC = 1.0, while for a random
ranking AUC = 0.5. The calculated AUC value can be interpreted as the probability
of a similarity score for a pair from the same group being greater than the score
for a sequence pair from a different group [18]. Here, the ROC analysis was evalu-
ated on each distance matrix calculated by a CBD on each dataset constructed from
the 3PGK by alphabet reduction, expansion and BWT, respectively. Figure 4.1a
shows high correlation between the AUC-kingdom and AUC-phylum, hence in the
following just the AUC-phylum is shown. In Fig. 4.1b the correlation between the
compression ratio and the AUC-phylum is plotted, where the compression ratio cr
is defined by

cr =
avg.uncompr.size

avg.compr.size
· �log2(al phabetsize)�

log2(256)
. (4.14)

Here �.� stands for the larger integer. The second constant term is a scaling factor
intended to provide a fair comparison for compressors on different size of alphabet
of 3PGK. After computing it, we found no apparent connection between the com-
pression performance and the quality of CBDs (measured by AUC), but a non-linear
relationship was found between the compression ratio and the size of the alphabet
(see Fig. 4.1c). This suggests that there is no connection between the alphabet size
and AUC, but in some cases an improvement can be attained. For example, the

94 A. Kertész-Farkas et al.

0.5 0.6 0.7 0.8 0.9
0.45

0.5

0.55

0.6

0.65

0.7

0.75
A

U
C

−
ki

ng
do

m

DNA
protein

0.5 1 1.5 2
0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
U

C
−

ph
yl

um

0.5 1 1.5 2
100

101

102

103

no
. o

f a
lp

ha
be

t

Fig. 4.1 The correlation between methods on nucleotide (plus) and amino acid (diamond)
sequences from 3PGK. (a) The relationship between the AUC-phylum and AUC-kingdom; (b) the
correlation between compression ratio and AUC; (c) the connection ratio is related to the alphabet
size non-linearly

Table 4.3 AUC results for amino acid sequences with an alphabet reduction and BWT acting on
3PGK

Original SB16 SB12 SB8 SB6 SB4 Dayhoff6 BWT

ABC 0.738 0.766 0.771 0.783 0.801 0.764 0.745 0.655
AH 0.658 0.628 0.636 0.625 0.567 0.541 0.583 0.652
GC 0.763 0.759 0.746 0.773 0.762 0.779 0.767 0.689
LZW 0.666 0.620 0.623 0.626 0.589 0.582 0.581 0.599
PPM 0.764 0.762 0.766 0.783 0.779 0.790 0.782 0.706

The pairwise distance/similarity matrix also was calculated on the original amino acids sequences
via naive distance and SW, and the AUC values we got were 0.685 and 0.797, respectively. The
largest score is underlined.

alphabet reduced to 4–8 can improve the AUC values with some compressors, as
Table 4.3 shows. Tables 4.4 and 4.5 list results of expanded alphabets on reduced
amino acids and of the original nucleotide sequences, with varying results. At this
point it should be mentioned that the compressor of a reduced alphabet can be con-
sidered as a lossy compressor. The BWT method was also evaluated both on amino
acids and nucleotide sequences, but it did not improve the AUC values perhaps be-
cause the sequence lengths were short.

4.3.4 Experiments on Protein Classification

To evaluate these CBDs for protein classification, we chose the SCOP40 database.
For the train and test set division, the supervised cross-validation technique was
applied, which is a selection of test and train sets that are based on known sub-
types within a database [21]. A family with over five members was selected as the
positive test and the rest of the superfamily was the positive train set. The negative
sets were selected in a similar way. This approach provides a reliable estimation of

4 The Application of Data Compression-Based Distances to Biological Sequences 95

Table 4.4 AUC results for an alphabet expansion on 3PGK of a reduced alphabet

SB8 SB6 SB4 Dayhoff

Aa AAb Aa AAb AAAc Aa AAb AAAc Aa AAb AAAc

ABC 0.783 0.746 0.801 0.668 0.794 0.764 0.672 0.699 0.745 0.738 0.774
AH 0.625 0.639 0.567 0.664 0.746 0.541 0.646 0.675 0.583 0.624 0.750
LZW 0.626 0.696 0.589 0.693 0.763 0.582 0.637 0.720 0.581 0.691 0.732
PPM 0.783 0.771 0.779 0.775 0.777 0.790 0.780 0.773 0.782 0.782 0.780

aThe values were taken from Table 4.3
bBi-gram residue compositions were used
cTri-gram residue compositions were used
Here, GC compressor was not used. The largest score is underlined.

Table 4.5 AUC results for an nucleotide sequences with an alphabet expansion on 3PGK

Original AAa AAAb BWT

ABC 0.676 0.633 0.668 0.639
AH 0.589 0.660 0.669 0.593
GC 0.702 n.a. n.a. 0.634
LZW 0.652 0.668 0.660 0.628
PPM 0.722 0.729 0.658 0.657

aBi-gram residue compositions were used
bTri-gram residue compositions were used
The pairwise distance/similarity matrix was also calculated on the orig-
inal amino acids sequences via naive distance and SW, and the AUC
values we got were 0.662 and 0.807, respectively. The largest score is
underlined.

how an algorithm will generalise to a novel, distantly-related subtype of the known
protein classes. Altogether, we obtained 55 classification tasks in this manner. The
sequences were represented by the so-called Empirical Feature Map method, where
a sequence X is represented by a feature vector FX = fx1 , fx2 , . . . , fxn . Here n is the
total number of proteins in the training set and fxi is a similarity/distance score
between sequence X and the ith sequence in the training set. For the underlying
similarity measure, CBDs along with the BLAST and Smith–Waterman algorithms
were applied.

Classification Methods: Nearest Neighbour (1NN) classification [15] is a technique
whereby a query sequences is assigned to the priori known class of the database en-
try that was found most similar to it in terms of a log-likelihood ratio of the nearest
positive and negative score via a distance/similarity measure [20]. Artificial Neu-
ral Networks (ANNs) were then employed, whose structure consisted of one hidden
layer with 40 neurons and the output layer consisted of one neuron. For each neuron,
the log-sigmoid function was used as the transfer function and the Scaled Conjugate
Gradient (SCG) algorithm was used for training [6]. The package we applied was
the Neural Network toolbox version 5.0 of Matlab. The Support Vector Machines
(SVMs) [34] method employed was LibSVM [10]. In our experiments, the Radial

96 A. Kertész-Farkas et al.

Table 4.6 The AUC results on protein classification with several classifiers and featuring method
applied on SCOP40

Method namea (AUCb) 1NN SVM RF LogReg ANN Avg

ABC (0.699) 0.726 0.843 0.779 0.806 0.834 0.798
AH (0.690) 0.711 0.877 0.824 0.751 0.800 0.793
GC (0.674) 0.644 0.775 0.691 0.753 0.769 0.726
LZW (0.769) 0.751 0.856 0.821 0.718 0.794 0.788
PPM (0.700) 0.798 0.851 0.800 0.813 0.583 0.823
naive (0.597) 0.653 0.882 0.848 0.786 0.837 0.801
BLAST (0.684) 0.775 0.905 0.697 0.836 0.902 0.823
SW (0.823) 0.956 0.946 0.823 0.913 0.897 0.907

aMethod used in the vectorization step
bThe AUC values in parentheses were obtained via distance matrices in the
way described in Sect. 4.3.3.

Basis Function kernel was used, where the width parameter σ was the median Eu-
clidean distance from any positive training example to the nearest negative example.
The Logistic Regression (LogReg) [29] method was part of Weka versions 3–4 [37].
Finally, the Random Forest (RF) technique is a combination of decision trees such
that each tree is grown on a bootstrap sample of the training set. For each node, the
split is chosen from m�M variables (M being the number of dimensions) on which
to base the decision [7]. In our experiments, 50 trees were used and the number of
features m was set to log(l +1), where l is the number of training patterns. The RF
was part of Weka versions 3–4. For an evaluation of the classifier, ROC analysis was
performed by ranking the test object using their score obtained by a learned model.
The results are shown in Table 4.6.

4.3.5 Sequence Length and Sequence Complexity

It is known that short sequence similarities are more difficult to locate than long
ones. This tendency also appears to be valid for CBDs analysed here. For exam-
ple, when we plot the classification performance measure AUC for the 55 SCOP40
families as a function of the average sequence length, the low values are predom-
inantly found in the shorter superfamilies (Fig. 4.2). This trend is quite similar for
the BLAST and Smith–Waterman algorithms as well (http://www.inf.u-szeged.hu/
∼kocsor/CBM05).

A dataset of high and low complexity sequences was produced by taking hu-
man proteins from the KOG database [23], processing them with the SEG program
written by J. Wootton [38], and applying the parameter values of window length =
45, trigger complexity = 3.25, and extension complexity = 3.55, as recommended
by the author. Segments with length in the range of 20–1,000 amino acids were
chosen for further analysis. From a total of 163,473 high-complexity and 53,849

4 The Application of Data Compression-Based Distances to Biological Sequences 97

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ABC
A

U
C

 −
 v

al
ue

0 100 200 300 400 500
0.3

0.4

0.5

0.6

0.7

0.8

0.9

AH

A
U

C
 −

 v
al

ue

Average sequence length

GC

0 100 200 300 400 500

LZW

Average sequence length

PPM

0 100 200 300 400 500

SW

Average sequence length

Fig. 4.2 The dependence of classification performance on the average sequence length in the
SCOP40 families

0 200 400 600
0.4

0.5

0.6

0.7

0.8

0.9

1
AH

se
qu

en
ce

−
to

−
ra

nd
om

 d
is

ta
nc

e

0 200 400 600

GC

0 200 400 600

LZW

0 200 400 600
0.4

0.5

0.6

0.7

0.8

0.9

1
PPM

Fig. 4.3 A comparison of native sequences with their random shuffled counterparts in KOG and
high- (grey) and low-complexity (black) segments of human proteins as a function of their length.
The CBD distances of a sequence from its random-shuffled counterparts should give a value close
to 1.00

low-complexity regions, we randomly selected 8,859 and 3,772 sequences, respec-
tively, for an analysis, for which the results are shown in Fig. 4.3. Low-complexity
segments correspond to non-globular regions in proteins, characterised by a biased
amino acid composition and/or a repetitive amino acid sequence. Such regions are
well known for obscuring the detection of biologically important similarities [38].
We had two particular reasons for testing CBDs on low-complexity regions: (1)
repetitive character-sequences can be better compressed than average sequences; (2)
our datasets of natural sequences are composed of proteins that are predominantly
globular, so they are expected to contain few low complexity regions. We found that
the distributions of CBDs values for low- and high-complexity proteins were not
markedly different (see Fig. 4.3); however, this seems to be analogous to our earlier
finding that the compression ratio is independent of the AUC measure (Fig. 4.1b).

98 A. Kertész-Farkas et al.

4.4 Conclusions

One of the main problems of computational sequence analysis is the fact that se-
quence similarity groups are highly variable in terms of most parameters, including
the number of members, the degree of within-group similarity and separation from
other groups. Consequently, a method that performs well on one group may perform
worse on another and vice versa, and very often there are no clear tendencies in the
results. This was also true for our study, but we were able to identify a few clear
tendencies.

CBDs perform less well than substructure-based comparisons such as the Smith
Waterman algorithm in protein similarity. This is in fact expected, since Smith–
Waterman calculations include a substantial amount of biological knowledge en-
coded in the amino acid substitution matrix. Moreover, CBDs are less sensitive to
domain rearrangement than the alignment-based BLAST or Smith–Waterman. Cu-
riously, some combinations of CBDs approach with BLAST comparison exceed the
performance of Smith–Waterman in protein classification [22]. Unfortunately CBDs
and alignment-based measures depend on the length of the sequences.

In our experiments, we were unable to find any statistical connection between
the compression ratio of the sequences and the modularity expression (which was
measured by AUC). Perhaps this was because the sequence lengths we examined
were short. Moreover, the well-tested BWT method of data compression could not
be used here. Similar findings were also described in [28].

In general, in the results there is no monotone tendency as a function of the re-
duced size of the alphabet. The performance of the statistics-based AH compressor
decreased when the alphabet was reduced, while the partial matching-based algo-
rithms like PPM and GC improved their performance. This could mean that muta-
tions of amino acids found in the same cluster do not really change their structure
and function(s). Furthermore, a compressor applied to reduced alphabet sequences
can be viewed as a lossy compressor. An alphabet expansion with bi-gram and tri-
gram composition usually increases the performance of the statistical AH compres-
sor, as in the expanded letter distribution the neighbours of the original letters are
taken into account.

Overall, partial matching-based compressors (PPM, GC) seem to outperform
the various types of compressors available, both in ROC analysis and protein
classification.

Acknowledgements A. Kocsor was supported by the Jnos Bolyai fellowship of the Hungar-
ian Academy of Sciences. Work at ICGEB was supported in part by grants from the Ministero
dell.Universita’ e della Ricerca (D.D. 2187, FIRB 2003 (art. 8), “Laboratorio Internazionale di
Bioinformatica”).

4 The Application of Data Compression-Based Distances to Biological Sequences 99

References

1. Abel, J.: Improvements to the burrows-wheeler compression algorithm: After bwt stages
(2003)

2. Ágoston, V., Kájan, L., Carugo, O., Hegedűs, Z., Vlahovicek, K., Pongor, S.: Concepts of
similarity in bioinformatics. In: D. Moss, S. Jelaska, S. Pongor (eds.) Essays in Bioinformatics.
IOS, Amsterdam (2005)

3. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search
tool. J Mol Biol 215(3), 403–410 (1990)

4. Andreeva, A., Howorth, D., Brenner, C.: Scop database in 2004: refinements integrate struc-
ture and sequence family data (2004)

5. Bennett, C.H., Gács, P., Li, M., Vitanyi, P.M.B., Zurek, W.H.: Information distance. IEEETIT:
IEEE Trans Inform Theory 44, 1407–1423 (1998)

6. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press, Oxford
(1996)

7. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
8. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Tech. Rep.

124, 130 Lytton Avenuve, Palo Alto, CA, 94301 (1994)
9. Cai, H., Kulkarni, S.R., Verdú, S.: Universal entropy estimation via block sorting. IEEE Trans

Inform Theory 50(7), 1551–1561 (2004)
10. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001)
11. Chen, X., Kwong, S., Li, M.: A compression algorithm for DNA sequences and its applications

in genome comparison. In: RECOMB, p 107 (2000)
12. Cilibrasi, R., Vitanyi, P.M.B.: Clustering by compression. IEEE Trans Inform Theory 51(4),

1523–1545 (2005)
13. Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley, New York (1991)
14. Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in proteins.

In: M.O. Dayhoff (ed.) Atlas of protein sequence and structure, vol. 5, 345–358. National
Biomedical Research Foundation, Washington, D.C., (1978)

15. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience, New
York (2000)

16. Ferragina, P., Giancarlo, R., Greco, V., Manzini, G., Valiente, G.: Compression-based classifi-
cation of biological sequences and structures via the universal similarity metric: experimental
assessment. BMC Bioinformatics 8, 252 (2007)

17. Gribskov, M., Robinson, N.: Use of receiver operating characteristic (roc) analysis to evaluate
sequence matching. Comput Chem 20, 25–33 (1996)

18. Hanley, J.A., Mcneil, B.J.: The meaning and use of the area under a receiver operating char-
acteristic (roc) curve. Radiology 143(1), 29–36 (1982)

19. Henikoff, S., Henikoff, J.G., Pietrokovski, S.: Blocks: a non-redundant database of protein
alignment blocks derived from multiple compilations. Bioinformatics 15(6), 471–479 (1999)

20. Kaján, L., Kertész-Farkas, A., Franklin, D., Ivanova, N., Kocsor, A., Pongor, S.: Application
of a simple likelihood ratio approximant to protein sequence classification. Bioinformatics
22(23), 2865–2869 (2006)

21. Kertész-Farkas, A., Dhir, S., Sonego, P., Pacurar M., Netoteia, S., Nijveen, H., Kuzinar, A.,
Leunissen, J., Kocsor, A., Pongor, S.: Benchmarking protein classification algorithms via su-
pervised cross-validation. J Biochem Biophys Methods 35, 1215–1223 (2007)

22. Kocsor, A., Kertész-Farkas, A., Kaján, L., Pongor, S.: Application of compression-based dis-
tance measures to protein sequence classification: a methodological study. Bioinformatics
22(4), 407–412 (2006)

23. Koonin, E.V., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Krylov, D.M., Makarova, K.S.,
Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S., Rogozin, I.B., Smirnov, S.,
Sorokin, A.V., Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J., Natale, D.A.: A comprehen-

100 A. Kertész-Farkas et al.

sive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome
Biol 5(2) (2004)

24. Li, M.: Information distance and its applications. In: O.H. Ibarra, H.C. Yen (eds.) CIAA,
Lecture Notes in Computer Science, vol. 4094, 1–9. Springer, Berlin (2006)

25. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.: The similarity metric. In: SODA ’03: Proceedings
of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, 863–872. Society
for Industrial and Applied Mathematics, Philadelphia (2003)

26. Li, M., Vitanyi, P.: An introduction to kolmogorov complexity and its applications, 2nd edn.
Springer, Berlin (1997)

27. Li, M., Vitányi, P.M.: Mathematical theory of thermodynamics of computation. Tech. rep.,
Centre for Mathematics and Computer Science, Amsterdam, The Netherlands (1992)

28. Nevill-Manning, C.G., Witten, I.H.: Protein is incompressible. In: DCC ’99: Proceedings of
the Conference on Data Compression, p. 257. IEEE Computer Society, Washington, DC, USA
(1999)

29. Rice, J.C.: Logistic regression: An introduction. In: B. Rhompson (ed.) Advances in social
science methodology, vol. 3, 191–245. JAI, Greenwich (1994)

30. Schweizer, D., Abu-Mostafa, Y.: Kolmogorov metric spaces. Manuscript, Computer Sciences,
256–80, California Institute of Technology, Pasadena, CA 91125 (1998)

31. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J Mol Biol
147, 195–197 (1981)

32. Sonego, P., Pacurar, M., Dhir, S., Kertész-Farkas, A., Kocsor, A., Gáspári, Z., Leunissen,
J.A.M., Pongor, S.: A protein classification benchmark collection for machine learning. Nu-
cleic Acids Res 35(Database-Issue), 232–236 (2007)

33. Susko, E., Roger, A.J.: On reduced amino acid alphabets for phylogenetic inference. Mol Biol
Evol 24, 2139–2150 (2007)

34. Vapnik, V.N.: The nature of statistical learning theory, 2nd edn. Springer, Berlin (1999)
35. Vinga, S., Almeida, J.: Alignment-free sequence comparison-a review. Bioinformatics 19(4),

513–523 (2003)
36. Willems, F.M.J., Shtarkov, Y.M., Tjalkens, T.J.: The context-tree weighting method: basic

properties. IEEE Trans Inform Theory, 653–664 (1995)
37. Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with

Java implementations. Morgan Kaufmann, San Francisco (1999)
38. Wootton, J.C.: Non-globular domains in protein sequences: automated segmentation using

complexity measures. Comput Chem 18(3), 269–285 (1994)
39. Zurek, W.H.: Thermodynamic cost of computation, algorithmic complexity and the informa-

tion metric. Nature 341(6238), 119–124 (1989)

