
 Protein & Peptide Letters, 2008, 15, 000-000 1 

  0929-8665/08 $55.00+.00 © 2008 Bentham Science Publishers Ltd. 

Protein Classification Based on Propagation on Unrooted Binary Trees 

András Kocsor
1
, Róbert Busa-Fekete

1
 and Sándor Pongor

2,3,
* 

1
Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University of Szeged, H-6720, 

Szeged, Aradi vértanúk tere 1., Hungary; 
2
Protein Structure and Bioinformatics Group, International Centre for Genetic 

Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy; 
3
Bioinformatics Group, Biological Research 

Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6701 Szeged, Hungary  

Abstract: We present two efficient network propagation algorithms that operate on a binary tree, i.e., a sparse-edged sub-

stitute of an entire similarity network. TreeProp-N is based on passing increments between nodes while TreeProp-E em-

ploys propagation to the edges of the tree. Both algorithms improve protein classification efficiency. 
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1. INTRODUCTION 

 Propagation algorithms have gained importance in sev-
eral areas of pattern recognition and information retrieval. 
Belief propagation or message passing [1,2], the PageRank 
algorithm [3] and the power method [4] are all based on 
propagating information through a network that consists of 
nodes and edges. Several propagation algorithms were suc-
cessfully used in practice, the PageRank algorithm used by 
the Google WEB surfer perhaps being the best known exam-
ple. 

 Protein classification is a crucial task in genome annota-
tion, and virtually all major algorithms of machine learning 
have been applied to this problem with varying success [5-
7]. Propagation algorithms were also successfully employed 
in this field [8-10]. The apparent advantage of this approach 
originates from the fact that classification does not just rely 
on a simple similarity measure but also on the entire network 
protein similarities. In fact, the first application of a PageR-
ank style algorithm to protein classification [8] demonstrated 
that propagation yields a definite increase in classification 
efficiency. On the other hand, protein similarity networks are 
large, and they typically contain several hundred thousand 
proteins as nodes and several million pairwise similarity val-
ues as links, which makes propagation rather time-
consuming. To overcome this, one possibility is to use 
smaller networks for the propagation, like bipartite graphs 
[9] or threshold graphs [11]. In this paper we explore another 
avenue that instead of propagating on the entire network 
focuses on replacing a relevant part of the protein similarity 
network by a structured description. This approach is based 
on the well known observation that protein similarity net-
works are modular, i.e. they contain densely connected sub-
graphs around each protein class, wherein the biologically 
important similarities between members of the same class  
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can be easily distinguished from the accidental similarities 
that exist between members of different classes [12,13]. In 
addition, structured descriptions such as phylogenetic trees 
are known to capture the important features of a classifica-
tion scheme, so they may serve as a natural noise reduction 
filter for propagation algorithms. Here we propose to replace 
(a selected part of) the protein similarity network with a bi-
nary tree on which the propagation will be carried out. Bi-
nary trees are sparse structures as compared to a full network 
of similarities, so there is potential gain in speed. On the 
other hand, one has to build a binary tree, which is an extra 
burden, but as we will see, there is a substantial overall gain 
in computing time. 

 We will now describe two heuristic protein classification 
algorithms that use propagation on binary trees. TreeProp-N 
is modeled on the PageRank/RankProp philosophy. It uses 
an initial ranking vector based on the distance of the data-
base entries from the query measured along the edges of the 
tree. This ranking is then updated by propagating informa-
tion along the edges of the tree. TreeProp-E uses a different 
propagation principle: the initial data is stored in the 
weighted edges of the binary tree, and the weights afterwards 
are propagated to the neighboring edges by a simple update 
rule. We will use the fast tree-building algorithm FastME 
[14] to construct the initial tree for both algorithms. 

 The rest of this paper is organized as follows. In the next 
section we will introduce the PageRank method and its ap-
plications to protein classification tasks (Section 2). Then we 
will introduce two new algorithms called TreeProp-N and 
TreeProp-E that use phylogenetic trees for the propagation 
(Section 3 and Section 4). The efficiency of our methods will 
be compared on various real-life benchmark datasets, includ-
ing protein sequences as well as protein 3D structures (Sec-
tion 5). Section 6 contains a summary of the results and a 
discussion. All the other algorithms and datasets used here 
are described in the Appendix section. 

2. PAGERANK AND ITS APPLICATION TO PROTEIN 
CLASSIFICATION 

 Originally, the PageRank algorithm [3] was developed 
for information retrieval purposes. There are many other 
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areas where this simple idea was adopted with success, in-
cluding Natural Language Processing [15], Word Sense Dis-
ambiguation [16] and Protein Classification [8]. The com-
mon representation underlying these diverse fields is an a 
priori known similarity network of objects (i.e. a weighted 
graph, where the points correspond to the objects, and the 
edges represent the similarities among them). Each similarity 
network can be represented as a stochastic matrix S in which 
each row sums up to one and which has no negative entry. 
An entry of the matrix S represents the similarities between 
two objects. PageRank converges to the stationary point of 
transformation S (i.e., the stationary distribution of those 
Markov chains where the transition matrix is S). We can 
express this ranking in an iterative fashion using the follow-
ing update rule: 

)()1( tSyty =+                                   (1) 

where y(t+1) denotes the similarity score after t iterations. 

Since this rule corresponds to the ordinary power method 

[17], the convergence is fulfilled [4]. Moreover the 

Y={y(0),y(1),…,y(T),…} sequence will converge to the big-

gest eigenvector of the stochastic matrix S, which is - due to 

the Perron-Frobenius theorem - equal to 1. We should note 

here that this method computes a single rank value for each 

object of the given network, i.e. this is not yet a query-based 

algorithm. Besides this the convergence of this process is 

known to depend on the gap between the first and second 

eigenvalues [17]. It may thus be worthwhile to explore the 

eigenvalue difference in order to estimate the necessary 

number of iterations before we use this approach on a simi-

larity network. With biologists it is normal practice to have 

an unknown protein sequence which is compared to a data-

base using a sequence comparison tool, like Smith-

Waterman (SW) algorithm [18] or BLAST algorithms [19]. 

The result is a ranking of the database entries according to a 

similarity score with respect to the query, and the top hits are 

evaluated either by an expert or by automated procedures. 

The query-based or personalized version of PageRank is 

more applicable for this type of a problem. Let us denote the 

protein entries of the database by Nppp ,...,,
21

 and the 

query protein by q. Now let’s define a pairwise similarity 

measure between the ith and jth protein as ),(
ji
pps  (typi-

cally this will be a BLAST or Smith Waterman similarity 

score). We can then organize the ),(
ji
pps  similarities into 

a matrix S, where the rows will be normalized so that their 

sum equals 1. Then, with the help of matrix S, we can formu-

late the update rule of the so-called personalized PageRank 

method as 

)()0()1( tSyyty +=+                        (2) 

 Here y(0) is the initial vector of similarity scores and the 

 parameter is a constant in the range [0,1]. This process 

converges to the 
*
y  fix-point of Eq. 2, and it can also be 

calculated analytically by solving the *1 )0()( yySI =  

system of linear equations. But the size of matrix S is N N,  

 

so the analytical solution requires )( 3
NO  time. On the other 

hand, we can adequately approximate y
*
 by y(T) (i.e. the Tth 

element of the iteration sequence). The personalized PageR-

ank algorithm was introduced for protein classification as the 

RankProp algorithm in the seminal paper of Weston et al. 

[8]. 

 A slightly different update rule was also introduced by 
Zhou et al. in [11]: 

)()0()1()1( tSyyty +=+                  (3) 

 It is easy to show that the y
*
 limit point of Eq. 3 is equal 

to )0())(1( 1
ySI . This form of PageRank leads to 

the same ranking as Eq. 2. 

 As restricting the size of the similarity network is a plau-
sible way of speeding up the calculation, bipartite graphs [9] 
or threshold graphs [11] were both used for this. In the fol-
lowing sections we will present two novel algorithms that 
approach the problem of size restriction via the use of binary 
(phylogenetic) trees instead of a similarity network. 

3. TREEPROP-N: PROPAGATION ON THE NODES 

OF A BINARY TREE 

 The main idea behind the personalized PageRank method 

is the application of a diffusion operation on a network of 

pairwise protein similarity, according to Eqs. 2-3. In this 

section we will introduce an alternative algorithm, namely 

TreeProp-N, where a similar diffusion operation is applied 

on an unrooted weighted phylogenetic tree that was built up 

from a database and the query protein q. We should mention 

here that the phylogenetic tree is a binary tree graph wherein 

the leaves of the tree correspond to the biological objects. In 

our work, we used the FastME algorithm [14] to construct 

the tree from the pairwise similarity scores computed be-

tween the elements. If we use similarity scores [ ]1,0
ij
s , 

then the tree will be built from a distance score expressed as 

ij
s1 . 

 The propagation on the resulting tree in accordance with 

the update rule of the PageRank. The initial scores for each 

node (leaves and inner nodes) in the tree will be the shortest 

path between a given node and query element q. Since for 

the propagation we need similarity scores, rather than dis-

tance values we transform the shortest path values to similar-

ity score [ ]1,0  by dividing them with the maximal shortest 

path and subtracting the result from 1. 

 The propagation is carried out on the tree T=(V,E), where 
|V|=N+1. An unrooted binary tree T with N+1 leaves has 2N 
nodes, so we can collect the shortest path from the q query 
point to the points of the T tree into a y vector of length N+1. 
According to the binary branching pattern of the phyloge-
netic tree, a leaf will only have one neighbor while an inner 
node will have three neighbors. Next we will denote the 
neighbors of a point p by N(p). The update rule can be writ-
ten as: 

),(),()0()1()1(
)(

typpwyty p

pNp

iii

i

+=+          (4) 
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where ),(
i
ppw  stands for the weight of the edge between p 

and p
i
 within the tree, and iy (t)  means the propagated 

value of the point p
i
 after the t iterations. The  parameter 

lies between [0,1] as it does in Eq. 3. This parameter sets the 

balance between the effect of tree-structure on the one hand, 

and the effect ranking on the other: higher values will em-

phasize the former over the latter. 

 The convergence of the propagation is ensured if the out-
going edge weights from a point sum up to one, which is 
provided by a normalization step. We should add that the 
resulting matrix has at most three elements in each of its 
rows, so the calculation can be carried out in O(tn) time, 
where t is the number of iterations. 

4. TREEPROP-E: PROPAGATION ON THE EDGES 
OF A BINARY TREE 

 In a conventional propagation algorithm, the nodes of a 
similarity networks send messages to each other, and the 
magnitude of the messages is then proportional to the simi-
larity between the sender and receiver. Here we introduce a 
novel approach where the edge weights of a binary tree will 
be propagated. The idea behind this approach is similar to 
the original PageRank concept, because the weight of an 
edge will be determined by the weight of its neighbors. 

 In the first step we build up an T=(V,E,w) unrooted 
weighted phylogenetic tree using query protein q and the 
known entries of a database. This tree has N+1 leaves and 
2N-1 edges. Since we propagate on the edges the y(i) vectors 
have a length of 2N-1. In a tree we will call two edges adja-
cent if they have a common endpoint. In an unrooted binary 
tree an edge pointing to a leaf has two adjacent edges, while 
an interior edge has four adjacent edges. Let us denote the 
set of adjacent edges with edge e by N(e). 

 Now let y(0) be the initial value of the edge lengths of the 
tree. Then we can apply the following simple propagation 
rule: 

)()(/)0()1()1(
)(

tyeNyty

ij

j

eNe

eiii +=+            (5) 

which means that the score of an edge in step (t+1) will de-
pend on the mean value of the adjacent edge weights at step t 
as well as on its original weight at t=0. This update will be 
repeated a predetermined number of times, after which the 
ranking with respect to the query q can be calculated using 
the weighted path lengths between the query and the other 
proteins in the tree, calculated from the updated weights. The 
schematic overview of this method can be seen in Fig. (1). 

 The convergence proof of PageRank can be almost di-
rectly applied to TreeProp-E. If we rewrite the propagation 
rule in Eq. 5 into the matrix form, as in the case of PageRank 
(Eq. 3), we get a non-negative real matrix on which the Fro-
benius-theorem can be applied. And since its row sum is less 
than one, its spectral radius is also less than one so the con-
vergence is ensured. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The process of the local operations on the edges. Each 

neighboring edges of an internal edge sends "messages" to its 

neighbor, and the magnitude of the message is proportional to the 

propagated edge weight. 

5. EXPERIMENTS 

5.1. Time Complexity and Practical Implementation 

 The personalized PageRank/RankProp method applies 
the propagation to an entire similarity network. For a net-
work of N nodes this means a time-estimate of O(iN

2
) steps 

where i is the number of iterations. This can be time-
consuming for large protein similarity networks that typi-
cally have several thousand to several hundred thousand 
nodes. The situation can be alleviated by considering just the 
first n objects nearest to the query along with all of their 
similarities, which leads to a time-estimate of only O(inN), 
where i being the number of the iterations [8], [Supplemen-
tary data]. 

 TreeProp-N and TreeProp-E apply the propagation to a 
binary tree. Since constructing the tree with the FastME al-
gorithm requires O(N

2
) time in addition to propagation, it is 

necessary to reduce the size N of the input network. We pro-
pose a reduction where we consider just the m nearest neigh-
bors for each of the n top-ranking objects, which will lead to 
a maximal time estimate of O(inm). A phylogenetic tree is 
built from nm objects and it will have nm+1 leaves and nm-1 
internal nodes. The time-complexity of propagation by 
TreeProp-N can be estimated as i(nm+1+3(nm-1))=O(inm), 
because each internal node of a binary tree has three neigh-
bors. In the case of TreeProp-E the computation is similar, 
except that the internal edges have four neighbours, but the 
overall time complexity remains O(inm). We point out that i) 
the size of the tree is much less than nm since - owing to the 
clustered nature of the protein similarity space - the lists of 
the nearest neighbors are largely overlapping; ii) the number 
of iterations is typically less than 20, and iii) applied in this 
way, the algorithms will reorder just the top ranking ele-
ments of the original list of similarities. TreeProp-N and 
TreeProp-E were written in MatLab using the Bioinformat-
ics Toolbox. For the timing of RankProp we ported the 
original C source code of J. Weston into MatLab. Table 1 
gives a summary of the approximate time requirements for 
each algorithm. 
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 Table 1 shows that both tree-based algorithms faster than 
network-based propagation, and the gain in time compen-
sates for the extra time-requirement of tree-building. Natu-
rally, network-based propagation (RankProp) runs faster if 
applied to a smaller sized network, but this results in a de-
crease in performance as mentioned in Section 6. 

 In practical tests, the parameters of RankProp were the 
same as those recommended by Weston et al. in [8], i.e. the 

 parameter was 0.95 and the number of iteration was set to 
20. In the case of tree-based methods we used  =0.3 and 
i=20. These values were chosen because i) changing  pa-
rameter between 0-0.5 resulted in little variation in perform-
ance, and ii) TreeProp-N an TreeProp-E were typically 
found to converge in 10 steps or fewer. 

 The dependence of the performance on alpha and the 
number of iterations is shown for TreeProp-N in (Fig. 2). 
The dependence is roughly similar for TreeProp-E (not 
shown). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Ranking performance of TreeProp-N as a function of the 

alpha parameter in Eq. 4 and the number of iteration steps. The 

ranking performance is the cumulative ROC AUC value (Section ) 

calculated on the 3PGK dataset. 

5.2. Performance Evaluation on Various Databases 

 The algorithms were evaluated in terms of ROC analysis 
in the way described in Section 3.1. We also calculated the 
AUC

50
 (ROC

50
) value [20], because these values are not so 

sensitive for the class imbalance caused by a large excess of 
negatives compared to positives, which is a typical situation 
with all protein datasets analyzed below. In addition to the 
propagation algorithms (RankProp, TreeProp-N, TreeProp-

E) we used the simple nearest neighbor evaluation (1NN) as 
a basis of comparison. 

 We tested the methods on three protein datasets (3PGK, 
SCOP40mini, COG) using sequence similarity (BLAST, 
Smith-Waterman) and/or structural similarity (DALI) [21]. 
The datasets were selected so as to represent various degrees 
of difficulty. In the 3PGK dataset, the similarity between 
group members is high, and between various groups it is also 
quite high. In SCOP40mini, both the within-group and the 
between-group sequence similarities are relatively low. In 
COG, the within-group similarities are high and the between-
group similarities are low. Since there are several ten to sev-
eral hundred classification tasks defined on each datasets, we 
used the cumulative AUC value as a performance indicator. 
In a few cases (Tables 4-5) the cumulative AUC was close to 
1.00. In these cases we selected a few problematic tasks for 
the comparison. Tables 2-3 show the results obtained for 
sequence comparison methods BLAST and Smith-
Waterman. In general, the performance of TreeProp-N and 
TreeProp-E are similar to each other and slightly surpass that 
of RankProp followed by 1NN. Out of the 136 cases (for 
both similarity measure, SW, BLAST), RankProp and 1NN 
were the winners in 28 and 34 cases, respectively. 

 Table 5 contains data on structural comparison on the 
SCOP40mini dataset. This dataset is complex if we use se-
quence comparison (Table 3), but it is relatively easy if we 
use an efficient 3D comparison such as DALI. In this case 
the cumulative AUC was so high that there was hardly any 
difference between the algorithms, so we chose a few of the 
most problematic cases for comparison. Even though the 
AUC values are high, we see the same pattern as we do with 
sequence comparisons, i.e. in general there is an improve-
ment caused by propagation, and TreeProp-N and TreeProp-
E both perform well compared to RankProp. 

6. DISCUSSION AND CONCLUSIONS 

 Phylogenetic trees are used by biologists to highlight the 
salient internal structure of the protein universe in the form 
of a "tree of life". The rationale behind using phylogenetic 
trees for propagation is based on two assumptions; i) Propa-
gation on the salient edges of network may increase the effi-
ciency of the process due to noise reduction; ii) tree struc-
tures are sparse compared to a full network, so the process 
will be faster. Here we employed two strategies. TreeProp-N 
follows the strategy of PageRank, the only difference being 
that the propagation is applied to a tree, rather than to an 
entire network. TreeProp-E on the other hand propagates the 
edge-weights to neighboring edges. A further difference with

Table 1. Wall Clock Time Requirements for the RankProp, TreeProp-N and TreeProp-E algorithms
1
 

 RankProp
2
 TreeProp-N

3
 TreeProp-E

3
 

BLAST search
4

 1721.39 1721.39 1721.39 

Tree-building – 1180.13 1180.13 

Propagation 15528.2 204.14 205.46 

Total: 17249.59 3105.66 3106.98 
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Table 2. Comparison of the Algorithms on the 3pgk Dataset Using Smith-Waterman and BLAST Scores
1
 

 Smith-Waterman BLAST 

3pgk AUC AUC50 AUC AUC50 

1NN 0.892 0.892 0.899 0.899 

RankProp2 0.961 0.961 0.963 0.963 

TreeProp-N2 0.954 0.954 0.951 0.951 

TreeProp-E2 0.967 0.967 0.964 0.964 

 

Table 3. The AUC Values on the SCOP40mini Dataset Using Smith-Waterman and BLAST Scores
1
 

 Smith-Waterman BLAST 

SCOP40mini AUC AUC50 AUC AUC50 

1NN 0.815 0.781 0.763 0.774 

RankProp2 0.88 0.76 0.725 0.655 

TreeProp-N3 0.86 0.797 0.792 0.808 

TreeProp-E4 0.859 0.678 0.799 0.754 

1The raw scores were used for the comparison. 2The propagation was carried out in the same way as before. 3The propagation was carried out for the n = 20 top-ranking entries and 
there m = 20 neighbors, in i = 20 steps. 

 

Table 4. Comparison of the Algorithms on Selected Classification Tasks Defined on the COG Dataset Using BLAST Scores
1
 

Classification tasks 

COG Eval. 
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C
O

G
1

3
1

0
 

C
O

G
1

7
5

2
 

C
O

G
2

0
3

6
 

M
e
a

n
 

AUC 0.899 0.953 0.985 0.905 0.923 0.952 0.83 0.698 0.948 0.999 0.924 
1-NN 

AUC50 0.977 1 0.864 1 0.885 0.927 0.98 1 0.991 0.996 0.969 

AUC 0.862 0.978 0.97 0.818 0.912 0.908 0.797 0.47 0.967 1 0.877 
RankProp2 

AUC50 0.975 0.978 0.662 0.922 0.947 0.693 0.933 1 0.898 1 0.829 

AUC 0.974 0.95 0.998 0.96 0.91 0.94 0.949 0.978 0.933 1 0.966 
TreeProp-N3 

AUC50 0.96 0.98 0.947 0.996 0.945 0.977 0.997 0.889 0.98 1 0.969 

AUC 0.976 0.949 0.998 0.886 0.913 0.945 0.954 0.689 0.938 1 0.941 
TreeProp-E3 

AUC50 1 0.944 0.929 0.996 0.945 0.977 0.997 0.889 0.98 1 0.969 

1The raw scores were used for the comparison. 2The propagation was carried out in the same way as before. 3The propagation was carried out for the n = 20 top-ranking entries and 
there m = 20 neighbors, in i = 20 steps. For the evaluation of the results see text. 

 

respect to PageRank is the fact that the ranking is carried out 
according to the distance within a binary tree, rather than by 
using simple a similarity/distance measure. 

 Using ROC analysis on protein datasets (a total of 84 
sequence and structure classification tasks) of varying diffi-
culty, we found that TreeProp-N and TreeProp-E perform 

somewhat better and are faster than the personalized PageR-
ank/RankProp algorithm. 

 In the practical implementation of TreeProp-N and 
TreeProp-E we used the FastME algorithm [14] for tree con-
struction. We also tested BioNJ [22] and Weighbor [23], 
which provided identical results on our datasets, but required 
more cpu time (data not shown). 
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For both tree-based algorithms we used a reduced network, 
namely we selected the n top-ranking objects (n=40) and 
their m=40 nearest neighbors. Increasing n and m beyond 
this value did not affect the performance, and values of 
m=20 were generally satisfactory. In principle, this size re-
duction will make the computation faster, but it can also act 
as a noise reduction filter, since we select only the "impor-
tant neighbors" of the query. The question arises whether or 
not the same toplist restriction strategy would improve the 
performance of PageRank/RankProp. However when we 
used a reduced network (n=m=40) in conjunction with 
RankProp on the SCOP40 mini dataset (1337 proteins, 55 
classification tasks), the AUC value dropped from 0.880 to 
0.756. We obtained similar results on the other datasets as 
well (data not shown) so we believe that the improvements 
in performance were not induced by the toplist restriction 
being applied. 

 Summarizing, we can conclude that tree-structures can be 
efficiently used to increase the performance of protein classi-
fication algorithms. Even though we tested our algorithms on 
a large variety of classification test, we think that the im-
provements may critically depend on the applications, thus 
the parameters may need to be adjusted for the datasets that 
will be analyzed. 

APPENDIX: DATASETS AND METHODS OF CAL-

CULATION 

Phylogenetic Tree Building Methods 

 Biologists use a whole arsenal of sophisticated methods 
for building binary phylogenetic trees. One of the most 
popular ones is the Neighbor-Joining [24] and its more re-
cent variants BioNJ [22] and Weighbor [23], which are 
known to produce consistent trees in O(N

3
) time provided we 

have additive distance. Since we needed to build up a tree for 

each query protein, we looked for fast and sensitive equiva-
lents and chose the FastME algorithm that uses the Greedy 
Minimum Evolution tree construction method with Nearest 
Neighbor Interchange operator, and requires only O(N

2
) time 

[14]. The performance of FastME compares favorably with 
that of other, state-of-the-art algorithms [14]. We used the C 
implementation of FastME downloaded from http:// 
www.ncbi.nlm.nih.gov/CBBresearch/Desper/FastME.html. 

Performance Evaluation 

 The evaluation was carried out via standard receiver op-
erator characteristic (ROC) analysis [25]. This method is 
especially useful for protein classification as it includes both 
sensitivity and specificity, based on a ranking of the objects 
to be classified [20]. In the case of 1NN classification the 
ranking variable was the nearest neighbor similarity or dis-
tance value calculated between a query sequence on the one 
hand and the members of the positive training set on the 
other. This scenario corresponds to a one-class classification 
with outlier detection. In short, the analysis was carried out 
by plotting sensitivity vs. 1-specificity at various threshold 
values, then the resulting curve was integrated to give an 
"area under curve" or AUC value. If the evaluation proce-
dure contained several ROC experiments, one can draw a 
cumulative distribution curve of the AUC values [20], or use 
the average of the individual AUC values can be used as 
performance indicator [26,27]. 

Datasets 

 The protein datasets were taken from the Protein Classi-
fication Benchmark Collection (PCBC, [28]). The 3PGK 
dataset contains 131 proteins of identical function (id: 
PCB00016), divided into 10 classification tasks. The 
SOP40mini dataset contained 1357 proteins grouped by 3D 

Table 5. Comparison of the Algoritnms on Selected Classification Tasks Defined on SCOP40mini Dataset, Using the DALI 3D-

Comparison Scores
1
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. 

d
.8
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.1

._
d

.8
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.1
.3

. 

M
e
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n
 

AUC 0.949 0.967 0.988 0.96 0.961 0.903 0.99 0.948 0.958 
1-NN 

AUC50 0.985 0.567 0.857 0.706 0.966 0.735 0.936 0.989 0.843 

AUC 0.905 0.976 0.978 0.969 0.824 0.961 0.999 0.971 0.948 
RankProp2 

AUC50 1 0.685 0.723 0.735 0.98 0.542 0.991 1 0.832 

AUC 0.946 1 0.996 0.968 0.997 1 1 0.993 0.987 
TreeProp-N3 

AUC50 1 1 0.96 0.883 0.964 1 1 1 0.976 

AUC 0.949 1 0.998 0.987 0.993 1 1 0.996 0.99 
TreeProp-E3 

AUC50 1 1 0.917 0.851 0.976 1 1 1 0.968 

1The raw scores were used for the comparison. 2The propagation was carried out in the same way as before. 3The propagation was carried out for the n = 20 top-ranking entries and 
there m = 20 neighbors, in i = 20 steps. 
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structure (id: PCB00019), divided into 55 classification 
tasks. The COG dataset contained 17973 proteins grouped by 
function (id: PCB00017), divided into 117 classification 
tasks. From this dataset we evaluated only a few "difficult" 
tasks in order to test our algorithm. 
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LIST OF ABBREVIATIONS 

ROC = Receiver Operator Characteristic  

AUC = Area Under Curve 

PCBC = Protein Classification Benchmark Collection  

NJ = Neighbor joining  

1-NN = Nearest Neighbor Classifier  

REFERENCES 

[1] Lauritzen, S. L.; Spiegelhalter, D. J. (1988) Journal of the Royal 
Statistical Society, 50, 157-224. 

[2] Pearl, J.(1988) Probabilistic Reasoning in Intelligent Systems: 
Networks of Plausible Inference; Morgan Kaufmann. 

[3] Brin, S.; Page, L. (1998) Computer Networks and ISDN Systems, 
30, 107-117. 

[4] Motwani, R.; Raghavan, P. (1995) Randomized Algorithms (Cam-
bridge International Series on Parallel Computation); Cambridge 

University Press. 
[5] Liao, L. and Noble W. S. (2003) J. Comput. Biol., 10, 857-868. 

[6] Zhao X.M.,Cheung Y.M. and Huang D.S. (2005) Neural Net-

works,18, 1019-1028 
[7] Huang D.S., Zhao X.M., Huang G.B., and Cheung Y.M. (2006) 

Pattern Recognition, 39, 2293–2300 
[8] Weston, J.; Elisseeff, A.; Zhou, D.; Leslie, C. S.; Noble, W. S. 

(2004) Proc. Natl. Acad. Sci. U S A, 101, 6559-6563. 
[9] Kuang, R.; Weston, J.; Noble, W. S.; Leslie, C. (2005) Bioinfor-

matics, 21, 3711-3718.. 
[10] Leone, M.; Pagnani, A. (2005) Bioinformatics, 21, 239. 

[11] Zhou, D.; Weston, J.; Gretton, A.; Bousquet, O.; Schölkopf, 
(2004), Advances in Neural Information Processing Systems, 16, 

169-176.. 
[12] Hegyi, H.; Pongor, S. (1993) Bioinformatics(CABIOS), 3, 371-372. 

[13] Murvai, J.;Vlahovicek, K.; Barta, E.; Parthasaraty, S.; Hegyi, 
H.;Pfeiffer, F.;Pongor, S. (1999) Bioinformatics, 4, 343-344. 

[14] Desper, R.; Gascuel, O. (2002) J. of Comp. Biol., 5, 687-705. 
[15] Hassan S. and Banea C. (2006) In Workshop on TextGraphs, at 

HLT-NAACL, 53–60. 
[16] Mihalcea, R.; Tarau, P.; Figa, E. (2004) In Proc. of 20st Int. Conf. 

on Comp. Ling., Article No. 1126. 
[17] Parlet, B. N. (1994) The symmetric eigenvalue problem; Prentice-

Hall,Englewood, Cliffs, NJ. 
[18] Smith, T. F.; Waterman, M. S. (1981) J. Mol. Biol., 147, 195-197. 

[19] Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J. 
(1990) J. Mol. Biol, 215, 403-410. 

[20] Gribskov, M.; Robinson, N. (1996) Comput. Chem., 20, 25-33. 
[21] Holm, L.; Sander, C. (1995) Trends Biochem Sci., 11, 478-80. 

[22] Gascuel, O. (1997) Mol. Biol. Evol., 14, 685-695. 
[23] William, J. B.; Nicholas, D. S.; Aaron, L. H. (2000) Mol. Biol. 

Evol., 1, 189-197. 
[24] Saitou, N.; Nei, M. (1987) Mol. Biol. Evol., 4, 406-425. 

[25] Egan, J. P. (1975) Signal Detection theory and ROC Analysis.; 
New York: Academic Press. 

[26] Sonego P., Kocsor A. and Pongor S. (2007), Briefings in Bioinfor-
matics, in press. 

[27] Busa-Fekete R, Kertész-Farkas A, Kocsor A, Pongor S. (2007), J 
Biochem. Biophys. Methods., doi:10.1016/j.jbbm.2007.06.003  

[28] Sonego, P.; Pacurar, M.; Dhir, S.; Kertész-Farkas, A.; Kocsor, A.; 
Gáspari, Z.; Leunissen, J. A. M.; Pongor, S. (2007) Nucleic Acids 

Res., 35, 232-236. 

 

 

Received: ?????????????? Revised: ?????????????? Accepted: ??????????????? 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


