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Abstract
ROC (‘receiver operator characteristics’) analysis is a visual as well as numerical method used for assessing the
performance of classification algorithms, such as those used for predicting structures and functions from sequence
data. This review summarizes the fundamental concepts of ROC analysis and the interpretation of results using
examples of sequence and structure comparison.We overview the available programs and provide evaluation guide-
lines for genomic/proteomic data, with particular regard to applications to large and heterogeneous databases used
in bioinformatics.
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INTRODUCTION
Automated classification plays a fundamental role in

high-throughput projects such as genome sequen-

cing and structural genomics. Thus, assessing the

reliability of classifier algorithms has become essential

to ensure data quality. There are excellent reviews

on how to apply performance measures to classifiers

in general [1], as well as in bioinformatics [2, 3].

Of the many performance measures and methods

available, receiver operating characteristics (ROC)

analysis [4, 5] occupies a special place. This is

because, firstly, it provides a visual as well as

numerical summary of a predictor’s behavior in

contrast to simple performance indices. Second, it is

becoming a predominant method in bioinformatics

applications. The data generated in bioinformatics—

sequences, structures, etc.—are specific and quite

different from the kind of data for which ROC

analysis was originally invented. The goal of this

review is to summarize its application to the specific

tasks related to genome annotation, particularly to

the classification of biological sequences and protein

structures.

Originally developed for radar applications in the

1940s, ROC analysis became widely used in medical

diagnostics, where complex and weak signals needed

to be distinguished from a noisy background [6].

Subsequently, it gained popularity in machine

learning and data mining [7, 8]. Fawcett [9] provides

a good general introduction to the subject, and an

extensive list of publications and tutorials can be

found in [10]. Applications to bioinformatics were

fostered by the seminal paper of Gribskov and

Robinson [38]. The current popularity of ROC

analysis in bioinformatics may be due to the visibly

increasing use of machine learning techniques in
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computational genomics. Due to this sequence of

events, current bioinformatics applications of ROC

analysis use concepts and approaches taken from a

variety of fields. This work seeks to provide an

overview of ROC analysis as applied to molecular

biology data. The rest of this review is structured

as follows: (i) principles of ROC analysis, includ-

ing comparison methods on biological databases;

(ii) evaluation scenarios used in bioinformatics

applications; (iii) available software and (iv) recom-

mendations and caveats.

THEROC PRINCIPLE
The fundamental use of ROC analysis, covered in

this review, is its application to binary (or two-class)

classification problems. A binary classifier algorithm

maps an object (for example an un-annotated

sequence of 3D structure) into one of two classes,

that we usually denote as þ and �. Generally, the

parameters of such a classifier algorithm are derived

from training on known þ and � examples, then the

classifier is tested on þ and – examples that were not

part of the training sets (Figure 1).

A discrete classifier predicts only the classes to which

a test object belongs. There are four possible

outcomes: true positive, true negative, false positive, false
negative, schematically shown in Figure 2. If an

object is positive and it is classified as positive, it is

counted as a true positive (TP); if it is classified as

negative, it is counted as a false negative (FN). If the

object is negative and it is classified as negative, it is

counted as a true negative (TN); if it is classified as

positive, it is counted as a false positive (FP). If we

evaluate a set of objects, we can count the outcomes

and prepare a confusion matrix (also known as a

contingency table), a two-by-two table that shows

the classifier’s correct decisions on a major diagonal

and the errors off this diagonal (Figure 2, left).

Alternatively, we can construct various numeric

measures that characterize the accuracy, sensitivity

and specificity of the test (Figure 2, right). These

quantities are between 0 and 1 and can be

interpreted as probabilities. For instance, the false-

positive rate is the probability that a negative instance

is incorrectly classified as being positive. Many similar

indices are reviewed in [2] and [3].

Probabilistic classifiers, on the other hand, return a

score that is not necessarily a sensu stricto probability

but represents the degree to which an object is a

member of one particular class rather than another

one [11]. We can use this score to rank a test set of

objects, and a classifier works correctly if the positive

examples are at the top of the list. In addition, one

can apply a decision threshold value to the score, for

example, a value above which the prediction is

considered positive. In such a way, we can change

the probabilistic classifier into a discrete classifier.

Naturally, we can select different threshold values,

and, in this way, we can generate a (infinitely long)

series of discrete classifiers for one probabilistic

classifier.

Creating ROC curves
An ROC curve (Figure 3) is obtained by selecting a

series of thresholds and plotting sensitivity on the

Figure 1: Binary classification. Binary classifiers algo-
rithms (models, classifiers) capable of distinguishing two
classes that are denotedþ and�.Theparameters of the
model are determined from known þ and ^ examples;
this is the training phase. In the testing phase, test exam-
ples are shown to the predictor. Discrete classifiers can
assign only labels (þ or �) to the test examples.
Probabilistic classifiers assign a continuous score to the
text examples, which can be used for ranking.

Figure 2: The confusionmatrix and a fewperformance
measures that can be derived from the the number of
true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN) in a test set. TPR is the
true-positive rate or sensitivity, and FPR is the false-
positive rate. AROC curve is aTPRversus FPR plot.
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y-axis versus 1-specificity on the x-axis. Using the

abbreviations of Figure 2, this is a TPR (true-positive

rate) versus FPR (false-positive rate) plot. The output

of our imaginary classifier is the ranked list shown

on the left hand side of Figure 3. We can produce

the ROC curve shown at the bottom left of the

figure by varying a decision threshold between

the minimum and maximum of the output values

and plotting the FPR (1 – specificity) on the x-axis
and the TPR (sensitivity) on the y-axis. (In practice,

we can change the threshold so as to generate the

next output value; in such a way, we can create one

point for each output value). The empirical ROC

curve generated for this small test set is a step

function, and it will approach a continuous curve for

large test sets.

Each point in this curve corresponds to a discrete

classifier that can be obtained using a given decision

threshold. For example, when the threshold is set to

0.6, the TPR is 0.7 and the FPR is 0.1. An ROC

curve is thus a two-dimensional graph that visually

depicts the relative trade-offs between the errors

(false positives) and benefits (true positives) [11].

We can also say that an ROC curve characterizes

a probabilistic classifier, and each point of this curve

corresponds to a discrete classifier.

For sequences and 3D structure data, ROC

curves are almost exclusively generated with the

empirical (nonparametric) method outlined above

[12]. In many other application areas, it is customary

to use the so-called binormal approach [13–15] in

which the two populations (classes) are assumed to

be normally distributed. As a result, smooth ROC

curves can be drawn using the sample means and

variances of the two populations as shown in

Figure 4. In bioinformatics applications, the empiri-

cal approach is preferred, since the data (such as

BLAST similarity scores, 3D similarities) are known

to be not normally distributed, and in many cases, a

normal-scale transformation can not be performed in

a reliable way. For a complete treatise of parametric

and nonparametric methods see [16–18].

Interpretation of ROC curves
A ROC curve can be interpreted either graphically

or numerically, as schematically shown in the inset

Figure 3: Constructing a ROC curve fromrankeddata.TheTP,TN,FP and FN values are determined compared to a
moving threshold; an example is shown by an arrow in the ranked list (left). Above the threshold, þ data items are
TP,� data items are FP.Therefore, a threshold of 0.6 produces the point FPR¼ 0.1,TPR¼ 0.7, as shown in inset B.The
plot is produced bymoving the threshold through the entire range.Data were randomly generated based on the dis-
tributions shown in inset A.
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of Figure 5. A perfect probabilistic classifier corre-

sponds to the top ROC curve indicated by the

hashed line. Such a classifier assigns higher scores to

all positives than to any of the negatives, so the posi-

tives will be on top of the ranked list (Table 1, b).

This curve is rectangular and its integral, the ‘area

under the ROC curve (AUC or AUROC), is equal

to 1. The dotted diagonal line corresponds to a

‘‘random classifier’’ ’ that gives random answers,

irrespective of the input. The integral (AUC value)

of this curve is 0.5 (Table 1, f ). A correct classifier has

a ROC curve above the diagonal and an AUC4
�0.5. On the other hand, classifiers that give

consistently the opposite predictions, (‘anticorrelated’

classifiers) give ROC curves below the diagonal and

AUC values between zero and 0.5 (Table 1, g and h)

[19]. Figure 5 shows a comparison of three real

ROC curves obtained with BLAST, Smith

Waterman and DALI [20–22]. Structural comparison

with DALI performs better than the two sequence

comparison methods; however, Smith Waterman

does quite well on this particular task.

From a mathematical point of view, AUC can be

viewed as the probability that a randomly chosen

positive instance is ranked higher than a randomly

chosen negative instance, i.e. it is equivalent to the

Figure 5: Examples of ROC curves calculated by pair-
wise sequence comparisons using BLAST [20], Smith
Waterman [21] and structural comparisons using DALI
[22]. The query was Cytochrome C6 from Bacillus
pasteurii, theþ group was composed of the other mem-
bers of the Cytochrome C superfamily, and the ^ set
was the rest of the SCOP40mini dataset, which were
taken from record PCB00019 of the Protein
Classification Benchmark collection [47]. The diagonal
corresponds to the random classifier. Curves running
higher indicate better classifier performance. Note that
in this particular comparison, the performance of Smith
Waterman approaches DALI. In a more thorough, data-
base-wide comparison (Figure 6), DALI clearly outper-
forms the sequence comparisonmethods.

Table 1: Examples of AUCvalues for synthetic dataa

Ranks a b c d e f g h

1 þ þ � � � � � �

2 þ þ þ � � � � �

3 þ þ þ þ � � � �

4 þ þ þ þ � � � �

5 � � þ þ � � � �

6 þ � � þ þ � � �

7 þ � � � þ � � �

8 þ � � � þ � � �

9 � � � � þ þ � �

10 þ � � � � þ � �

11 � � � � � þ � �

12 � � � � � þ þ �

13 þ � � � � � þ �

14 þ � � � � � þ �

15 � � � � � � þ �

16 � � � � � � � �

17 � � � � � � � þ

18 � � � � � � � þ

19 � � � � � � � þ

20 � � � � � � � þ

AUC: 0.87 1.00 0.93 0.88 0.70 0.50 0.30 0.00

aThenumerical data are the same as used in Figure1 (and shownhere in
column a). The data in columns b^h were generated by assigning the
þ/� values in the indicatedmanner.

Figure 4: Binormal and empirical ROC curves.
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two sample Wilcoxon rank-sum statistic [23, 24].

Alternatively, AUC can be also be interpreted either

as the average sensitivity over all FPRs or as the

average specificity over all sensitivities [13]. Note that

AUCn values (described below under pairwise

comparison) cannot be interpreted in this fashion.

In practice, AUC is often used as a single

numerical measure of ranking performance. We

note that ranking is dependent on the call distribu-

tion of the ranked set, so one cannot set an absolute

threshold above which the ranking is considered

good. In general, a high AUC value does not

guarantee that the top ranking items will be true

positives, as shown from the synthetic data in

Table 1.

Averaging, confidence limits
The reliability of ROC curves can be estimated by

repeating the analysis on a number of datasets and

then calculating confidence bands from the resulting

set of ROC curves [25]. The results can be presented

as a bundle of curves (Figure 6) that can be aggre-

gated into an average curve, and the confidence

limits are given as the standard error calculated at

various points on the curves. It is customary to

calculate the average and variance of the AUC value

in the same manner [26].

The þ/� sets for repeated analyses can be

produced by standard random subdivision techni-

ques, such as bootstrapping, leave-one-out or k-fold

cross-validation [1, 27]. However, random subdivi-

sion is known to give low variances for protein/gene

classification tasks because once a member of a given

family is known, the other members can be easily

recognized [28, 29]. In order to get more realistic

estimates on a classifier’s generalization properties,

the object classes can be subdivided into their known

subgroups in such a way that, for instance, a protein

superfamily is analyzed by one of its constituent

families as the þtest and the other families as the

þtrain sets. This supervised cross-validation techni-

que is designed to answer a biologically relevant

question: how can a classifier recognize a new

subtype based on the other known subtypes. Such

datasets can be constructed for any database in which

a hierarchical classification is defined, such as SCOP,

CATH, COG or the taxonomic databases [29]. The

bottleneck is the size of the test set, and it is

recommended that one use groups in which þtest �

5 and þtrain �15 [24].

Comparison of ROC curves
A comparison can be graphical or numerical, based

on ROC curves or AUC values, respectively [25].

A ROC curve running above another is an indicator

of better classifier performance, and by the same

token, the bigger the AUC, the better the overall

performance of the test. However, this reasoning is

meaningful only if the two ROC curves do not cross

at any point. If they do, then it makes intuitive sense

to point out the region in which one classifier

outperforms the other (Figure 6, inset B), but the

comparison of the complete AUC values is not very

informative [30].

A quantitative comparison of values is meaningful

only if the variances are taken into account and

significance can be estimated. Graphic comparison of

ROC curves should be based on confidence bands

[31] (Figure 6). The significance of the difference

between two average AUC values can be estimated

with a statistical test such as a two-tailed t-test or a

Figure 6: Averaging and comparison of ROC curves.
Repeating the calculation on randomly sampled data
from the same set can be used to generate a bundle of
ROC curves that can be aggregated into average curves
(bold line) with confidence intervals. The error bars in
the figure correspond to 1.96 SD (95% confidence). The
higher running curves and the larger AUC values corre-
spond to better performance. Inset A: If ROC curves
cross (data taken from Table 1, continuous line cor-
responds to column a, dotted line corresponds to
column e), the results shouldbe evaluated for the individ-
ual sections (such as indicated by � and �). Inset B:
Illustration of partial AUC between FPR1¼0.1 and
FPR2¼ 0.3.
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two-tailed signed rank test [32]. For a more critical

comparison, the covariance of the two methods

can be taken into account according to a modified

z-test [33]:

z ¼
j < AUC >1 � < AUC >2 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2
1 þ SE2

2 � 2rSE1SE2

p ð1Þ

where SE is the standard error of the respective mean

AUC value, and r is the Pearson correlation

coefficient calculated by the numerical values

produced by the two classifiers for the same test

set. The significance of z can then be calculated by

standard methods [32]. DeLong and co-authors

describe a nonparametric comparison of areas under

two correlated ROC curves, which is implemented

in various software packages [12].

Finally, we note that the graphical or numerical

comparisons can also be restricted to selected parts of

the ROC curve because the experimenter may want

to ‘zoom’ on a range in which there is substantial

difference between the two ROC curves to be

compared (Figure 6, inset A). The partial area under

the ROC curve (pAUC) [34] is defined as the area

between two FPRs, FPR1 and FPR2, and can be

denoted as A(FPR1� FPR� FPR2) [35] (Figure 6,

inset B). Unlike AUC, whose maximum possible

value is always 1, the magnitude of pAUC is

dependent on the two FPRs chosen. pAUC can

be normalized by dividing it by its maximum value,

(FPR2–FPR1) [36]. The normalized pAUC or partial

area index can then be interpreted as the average

sensitivity for the range of FPRs or specificities

chosen [36].

Database-wide comparisons
The application of machine learning classification

algorithms to genomic data is a delicate task because

the known object classes—such as those of domain-

types and protein families—are highly variable in

most of their characteristics (e.g. average sequence

length, number of known members, strength of

within-group similarity, overlap with neighboring

groups, etc.). In order to make a reliable comparison

of methods, we have to carry out a comparison on as

many classes as possible, preferably with the

supervised cross-validation scenario described earlier,

which will estimate the generalization capability of

the methods.

The reliability of a classifier on an entire database

can be assessed from the arithmetic average of the

AUC values for all classification tasks defined on a

database as the overall performance indicator of a

classifier for the given database. If we have many

AUC values, we can also use a graphic comparison

by plotting the number (or fraction) of AUC values

above a certain threshold as a function of this

threshold value [24]. In this plot, the higher curves

indicate better performance (Figure 7). The numer-

ical integral of the curve, sometimes called the

cumulative AUC value, can serve as the overall

performance indicator. It is easy to show that the

numerical integral of the cumulative AUC curve

(approximated with the rectangle rule) is the

arithmetic average of the AUC values, so the two

methods provide the same information. Liao and

Noble [24] calculated the significance of database-

wide comparisons using a two-tailed signed rank test

between the individual AUC values calculated for

the individual classification tasks [37].

APPLICATION SCENARIOS
As already mentioned, the standard application of

ROC analysis is evaluating binary classifiers.

Figure 7: Database-wide comparison using cumulative
AUC curves and similaritymeasures.The threemethods
are BLAST [20], Smith Waterman [21] and DALI [22],
the comparison includes 55 classification tasks defined in
the SCOP40mini dataset of the Protein Classification
Benchmark [47].The comparison was done by a nearest
neighbor analysis using a groupwise scenario (Figure 7).
Each graph plots the total number of classification tasks
for which a givenmethod exceeds a score threshold (left
axis). The right axis shows the fraction of classification
tasks (totalnumberof tasks normalized to1.00).The inte-
gral of the normalized cumulative AUC curve (which
tends to the average of the constituent AUC values) is
indicated for eachmethod as5AUC4.
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However, the practice in molecular biology has

followed a different route, and ROC analysis was

also applied to scenarios that are different from

binary classification. In Table 2, we list the some

of the typical applications along with the type of

similarity/dissimilarity measure, the classifier algo-

rithm (model) and the ranking variables they apply.

The applications can be grouped into three broad

categories, which are explained in greater detail

subsequently.

Pairwise sequence comparison
Annotation by sequence similarity is a nearest

neighbor scenario, i.e. a query is assigned to the

functional/structural class of its most similar neigh-

bor, with similarity determined with a program like

BLAST. The first application of ROC analysis for

sequence similarity searching dates back to the work

of [38], who created a method capable of dealing

with the scarcely annotated datasets available at the

time (Figure 8A). Here, a separate ROC curve is

created for each entry of the þtest set. Originally, the

authors used only a few members of a protein family

as the þtest, evaluated only a part of the top list

by manually annotating the entries ‘on the fly’ as

þ or � and truncated the top list when a certain

number of negatives were found. This number is

indicated as an index, e.g. ROC50 means that the

ROC analysis was performed on a top list that

contained 50 negatives in addition to an unspecified

number of positives. This technique is widely used

today, and it is customary to compare methods

simultaneously in terms of ROC10, ROC20, etc. We

note that, while AUC for a complete test set is

between 0.5 and 1.0, the AUC values for truncated

top lists are between 0 and 1.0. In fact, the shorter

the top list is, the smaller the AUC values [39].

Database-wide averages and variance values can

be calculated by pooling the AUCs calculated for all

the entries of the test set, and cumulative ROC

curves can be drawn as outlined earlier.

Consensus descriptions
(generative models)
Generative models provide a consensus description

of an object group (the þtrain) and have been widely

used for the description of protein families, domain

types, etc. Methods including consensus sequences,

frequency matrices, profiles and HMM descriptions

fall into this category. In classification, the query is

compared with the consensus description of a given

class so as to provide a numerical score that can be

used for ROC analysis (Figure 8B). Jaakkola and

co-workers [40] use an HMM (trained from positive

examples only) for mapping each new protein

sequence on to a fixed length vector, and this

vector is then passed to a support vector machine

(SVM). SVM is a discriminative model (below), so

this approach is actually a hybrid of generative and

discriminative models.

Discriminative models
Finally, discriminative models are those in which the

model depends both on the þtrain and �train

groups. SVMs, artificial neural networks and other

machine learning algorithms fall into this category.

Their use follows the standard data mining scenario

of binary classification for which ROC analysis was

originally developed (Figure 1).

SOFTWARE FOR ROCANALYSIS
Because ROC analysis has been used in medical

diagnostics for many years, there are several easy to

Table 2: Assessment of predictor performance by ROC analysis in various application areas

Representation Predictor/Model Ranking variable Reference

Pairwise comparison
Protein sequence Nearest neighbor Sequence alignment score [38, 56, 57]
Protein structure Nearest neighbor VAST score, SHEBA score [58, 59]

Generative models (consensus representations)
Sequence group Nearest neighbor Sequence alilgnment score [24, 60]
Multiple alignment HMM [40]

Discriminative models
Vector of sequence alignment scores SVM Distance from hyperplane [24, 47, 29]
Vector of structural similarity t scores (DALI, PRIDE) SVM Distance from hyperplane [47]
Vector of sequence and structure similarity scores Artificial Neural Networks ^ [47]
Vector of sequence-n-gram compositions SVM [61]
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use, general purpose software packages available

(for a review see [41, 42]). Some of the packages are

open source, and users who want to try ROC

analysis of small datasets can use either these or the

ROC calculators on the web, such as the application

available on the website of John Eng [43].

Users interested in a large number of ROC

calculations, such as those necessary for database-

wide comparisons, may prefer to use the facilities

available in higher level programming environments

for statistics analysis, such as R, WEKA and

MATLAB�.

R is an open source statistical computing

environment that contains numeric and graphic

procedures for a large number of statistical methods

[44], including several solutions for ROC analysis.

The ROCR package [45] is perhaps the most

versatile application within R, as it can create a ROC

plot (as well as precision-recall curves and lift curves)

and allows the use of confidence intervals based on

bootstrapping, AUC and partial AUC values as well

as a wide range of other performance measures. The

extensive graphics capabilities and the availability of a

bioinformatics framework such as Bioconductor [46]

make R a good solution for academic bioinformatics

researchers. The reference [47] describes a frame-

work and provides downloadable R scripts for the

RC analysis of various classifiers.

WEKA is an open source toolkit for machine

learning designed for developing and testing

algorithms for data mining [48]. It offers many

state-of-the-art approaches in an object-oriented

framework, including classifiers (SVMs, decision

trees, rule learners, etc.) and clustering methods

operated via both a graphical and command line

interface. It includes several methods for classifier

evaluation. Its ROC Analysis module uses a

transformation analogous to Equation (2) as a default.

WEKA can also interoperate with R via the RWeka

package [49], which extends the capabilities of both

environments. The BioWeka project [50] is designed

to interface WEKA for bioinformatics applications.

The ROC Curve Toolkit for MATLAB�, which

is available at [51], implements some of the

basic methods for constructing and processing

ROC curves as discussed in [11]. MATLAB� is a

high-performance language, especially suited for

problems involving matrix and vector formulations.

The ROC Curve Toolkit for MATLAB� is well-

suited to be used with other available machine

learning tools.

RECOMMENDATIONSAND
CAVEATS
General scope and potential drawbacks
ROC analysis is based on ranking a database of

objects according to a similarity/dissimilarity mea-

sure. The ranking ability is a general property of the

classification algorithm and not of a specific classifier

that is a particular instance (parametrization) of

the algorithm. For example, ROC analysis can be

used to compare algorithms like BLAST and

Smith Waterman on a given sequence database

but will not tell anything about the thresholds to

be applied. This means that a high AUC value

will not guarantee that every classifier built using a

given algorithm will be efficient; it only indicates

that the algorithm is suitable for building good

classifiers.

The framework of a classifier comparison includes

(i) a similarity/dissimilarity measure, (ii) a classifier

Figure 8: Ranking scenarios for calculating ROC. In
the elementwise scenario (A), each query is compared
to a dataset of þ and ^ train examples. A ROC curve is
prepared for each query and the integrals (AUC-values)
are combined to give the final result for a group of
queries. In the groupwise scenario (B), the queries of
the test set are ranked according to their similarity to
the þtrain group, and the AUC value calculated from
this ranking is assigned to the group. Note that both
A and B are one-class classification (outlier detection)
scenarios because the negative group has no explicit
influence on the ranking variable.
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algorithm that provides a ranking, as well as (iii) a

dataset divided into classification tasks. Each of these

elements can be analyzed separately, but in view of

the extreme variability of protein and gene classes, it

is recommended that one keeps as many conditions

constant as possible. This common sense requirement

has led to a comparison strategy in which the

classification task (i.e. the þtrain, �train, þtest, �test

groups) is entirely predefined, so the calculations can

be repeated on precisely the same tasks. A collection

of pre-constructed datasets produced by various

random and supervised cross-validation methods is

now included into the Protein Classification

Benchmark database [47]. In this collection, there

is a number of classification tasks (þ/� test and train

groups) defined for each dataset, so the AUC for a

given dataset can be calculated as the average of the

average of the resulting AUCs.

ROC analysis is primarily meant for binary

classifiers, i.e. for problems where þ and � bench-

mark datasets can be safely identified [52]. If there are

unknown and undecided cases, ROC analysis can

only be applied to a safe, manually curated subset,

and it may be questionable whether or not a subset is

sufficiently representative of the variability of the

entire database.

Comparing similarity measures
When the goal is to compare similarity/distance

measures without explicit reference to a learning

algorithm, ROC curves are often calculated from a

nearest neighbor model in which a pairwise score is

the ranking variable. One can use an element-wise

scenario originally described by [38] or a group-wise

scenario, which is a generative model in which the

maximum similarity to the þtrain group is used as

the ranking variable. Neither pairwise comparisons,

nor generative models are sui generis binary classifica-

tions; rather, they resemble the framework of a one-

class classification or an outlier detection [53] that is

characterized by a closed decision surface, in contrast

to the open detection surface of a binary classifica-

tion. As a consequence, some of the fundamental

conditions of ROC analyses are actually not met.

A practical alternative applicable to groupwise

evaluations is to transform a similarity scores into

a likelihood ratio approximant:

L ¼
Sþ

S�
ð2Þ

where Sþ and S� are the highest (i.e. nearest

neighbor) similarity scores in the þtrain and

�train, respectively [54]. This transformation makes

the AUC values less dependent on class sizes, as

shown in Figure 9.

Class imbalance problems and
comparison of datasets
For training and evaluating binary classifiers, having

the same number of positive and negative examples

is recommended [1, 2]. This condition is practically

never met in bioinformatics databases because we

have many fewer positives than negatives. A correct

solution would be to select randomly equal numbers

from the two classes and construct many classifiers for

all cases, which is clearly too time consuming if we

need to repeat the training for each task. For this

reason, there are very few studies in which boot-

strapping is used for training classifiers for a

comprehensive set of known categories. Instead,

bioinformaticians use database-wide averages (such as

average AUCs) to characterize and compare algo-

rithms. Such an average value contains contributions

from classes of various sizes, so it may be a good

Figure 9: Comparison of various ranking and scoring
scenarios calculated by varying the number of negatives
in the ranking. Average AUCswere calculated for all 246
classifications tasks defined from the sequences taken
from the SCOP database, compared with the Smith
Waterman algorithm. The error bars indicate standard
deviations calculated from the 246 tasks. This is a
measure of dataset variability and not the evaluation.
Note that the group-wise scenario with likelihood-ratio
scoring gives values that are independent of the size of
the negative set, while the results of the others show an
increasing tendency [55].
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indicator of how a classifier works in general, but it

provides no information on how it behaves on

particular classes. It is apparent that a transformation

according to Equation (2) helps to decrease class

imbalance problems, but this effect should be

considered database-dependent.

Finding classes that are difficult to distinguish is an

especially delicate task due to the large variability of

proteins and genes. For instance, there are protein

domain types in which only a few, well-conserved

members are known, while other classes have several

thousand, loosely conserved members. Calculating

AUCs on truncated toplists, such as a ROC50, may

be quite misleading in these cases because the length

of the lists and the number of positives and negatives

included in the list may be very different in the two

cases. One can partially circumvent this problem by

the so-called balanced ROC (BAROC) protocol

[55], in which the length of the toplist is propor-

tional to the number of members in the positive.

Plotting the AUC as a function of the positive/

negative ratio in the toplist is also a useful tool

for finding difficult groups in a large database.

However, there are no general solutions that can

be equally applied to very small and very large

groups.

Which ranking scenario to use?
Generally speaking, the type of the algorithm will

determine the type of ranking scenario that should

be used. Discriminative models (artificial neural

networks, SVMs) can be trained and tested according

to the classical binary classifier scheme (Figure 1).

Generative models can be tested according to a

groupwise scenario, while simple (nearest neighbor)

comparison methods can be tested either by the

element- or the group-wise scenario. Figure 9

shows a comparison of the two scenarios on SCOP

sequences and the Smith Waterman similarity score,

using different class sizes. The results are comparable,

but it is clear that one can quantitatively compare

AUC values only if they are determined by the same

scenario. We note that the some publications do

not indicate clearly the scenario used, so comparison

of published AUC values may be misleading. The

time-requirements of the protocols also differ. In the

elementwise evaluation, we have as many AUC

calculations as there are test objects. With the

groupwise scenario, we only have as many calcula-

tions as there are test groups.

CONCLUSIONS
ROC analysis provides statistically supported numer-

ical and graphical tools for characterizing the

performance of predictors. It can be used to

investigate the performance of learning algorithms

under changing conditions, such as misclassification

costs or class distributions, and is thought to be more

informative than simple numerical performance

measures. Nevertheless, the variability of data used

in computational genomics creates problems for

model comparison, so it is recommended that

algorithms be benchmarked on well-controlled

datasets with standardized comparison protocols.

It is important to note that ROC analysis char-

acterizes the ranking potential of an algorithm and

not the performance of an actual classifier. It is

recommended that performance assessment should

not to rely on a single method, such as ROC

analysis, but should also include other comparison

measures into the evaluation [2, 3].
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