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Abstract
Background: Quorum sensing (QS) is a form of gene regulation based on cell-density that
depends on inter-cellular communication. While there are a variety of models for bacterial colony
morphology, there is little work linking QS genes to movement in an open system.

Results: The onset of swarming in environmental P. aeruginosa PUPa3 was described with a
simplified computational model in which cells in random motion communicate via a diffusible signal
(representing N-acyl homoserine lactones, AHL) as well as diffusible, secreted factors (enzymes,
biosurfactans, i.e. "public goods") that regulate the intensity of movement and metabolism in a
threshold-dependent manner. As a result, an "activation zone" emerges in which nutrients and
other public goods are present in sufficient quantities, and swarming is the spontaneous
displacement of this high cell-density zone towards nutrients and/or exogenous signals. The model
correctly predicts the behaviour of genomic knockout mutants in which the QS genes responsible
either for the synthesis (lasI, rhlI) or the sensing (lasR, rhlR) of AHL signals were inactivated. For wild
type cells the model predicts sustained colony growth that can however be collapsed by the
overconsumption of nutrients.

Conclusion: While in more complex models include self-orienting abilities that allow cells to
follow concentration gradients of nutrients and chemotactic agents, in this model, displacement
towards nutrients or environmental signals is an emergent property of the community that results
from the action of a few, well-defined QS genes and their products. Still the model qualitatively
describes the salient properties of QS bacteria, i.e. the density-dependent onset of swarming as
well as the response to exogenous signals or cues.
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Background
Quorum sensing (QS) is a form of gene regulation based
on cell-density, which depends on inter-cellular commu-
nication involving the production of and response to sig-
naling molecules [1] (Figure 1A). QS is advantageous to a
community of bacteria by facilitating adaptation to
changing environmental conditions and enhancing their
defense capabilities against other microorganisms or
eukaryotic host-defense mechanisms. In Gram-negative
bacteria, the most common QS system involves the pro-
duction and response to an acylated homoserine lactone
(AHL). A typical AHL-dependent QS system is mediated
by two proteins belonging to the LuxI-LuxR protein fami-
lies; LuxI-type proteins are responsible for synthesizing
AHLs which, in turn, interact directly at quorum concen-
tration with the cognate LuxR-family protein. Subse-
quently, this complex is able to affect target gene
transcription [2]. The QS regulatory network contains a
positive feedback loop that is thought to be necessary for

its switch-like-behavior as well as for the stability of its
'on' and 'off' states with respect to molecular noise [2-4].

In Pseudomonas aeruginosa, the AHL QS circuitry is com-
plex and hierarchical, consisting of two AHL QS systems
called LasI/R and RhlI/R. The LasI/R system synthesizes
and responds to N-3-oxo-dodecanoyl-homoserine lac-
tone (C12-3-oxo-AHL) whereas RhlI/R synthesizes and
responds to N-butanoyl-homoserine lactone (C4-AHL).
These two systems are global, regulating hundreds of
genes in P. aeruginosa, and playing key roles in coloniza-
tion and pathogenesis (reviewed in [5]). An important
phenotype regulated by AHL QS in P. aeruginosa is the
swarming motility, which is a community phenomenon
involving the fast movement of a bacterial population on
a semi-solid, viscous surface [6]. Swarming by P. aerugi-
nosa is characterized by a dendritic community appear-
ance and has been shown to require the expression of
several loci including flagella, pili, and rhamnolipid-
encoding genes [7]. AHL QS is pivotal for the swarming of

A) The principle of QS-mediated swarming in P. aeruginosaFigure 1
A) The principle of QS-mediated swarming in P. aeruginosa. B) Simplified regulatory framework. The system has a sin-
gle QS signal S (that in vivo corresponds to C12-3-oxo-AHL and C4-AHL). If the level of S exceeds a certain threshold level, the 
cell becomes activated. Production of S is increased by a positive feedback loop, and production of a factor F starts. F corre-
sponds to all secreted factors (i.e. "public goods") such as surfactants, enzymes, siderophores, and so on, that the cells secrete 
into the environment. If the concentration of F exceeds a threshold, the cells start to swarm: they increase their movement, 
nutrient intake, and metabolism.
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P. aeruginosa, as it is involved in the regulation of many of
the genes required for this community behavior (Figure 1;
[8,9]). P. aeruginosa has been studied intensely, mainly for
its ability to opportunistically cause chronic infections in
hospitalized and immunocompromised human hosts,
and for being the major cause of death in cystic fibrosis
patients [10]. Importantly, P. aeruginosa is also an efficient
colonizer of animal, soil, water, and plant environments.

The first step towards modeling the colonization abilities
of P. aeruginosa is defining the biological, experimental,
and computational frameworks. The biological question
we seek to answer is the contribution of QS to the onset of
swarming. We define swarming as the concerted move-
ment of a bacterial community in a given direction, for
example, towards nutrients and/or other exogenous sig-
nals. In accordance with previous molecular studies, we
base the model on the regulation of a few key genes. The
experimental framework is based on the growth proper-
ties of bacteria on agar plates. We used the so-called
swarming agar plates that allow the growth of activated
bacteria, but not of non-activated ones. The choice of the
computational framework is especially critical, since bac-
terial growth can be modeled with a variety of techniques,
most of which are directed to colony morphology. The
underlying methods fall into two broad categories (for
reviews see [11,12]): i) Continuum models treat bacterial
colonies as a continuous material that diffuses and
expands in an environment of other continuous materials
in a process described by reaction-diffusion equations
[11,12]. Bees et al. used continuum models to describe the
colony morphology of the quorum-sensing bacterium
Serratia liquefaciens [13,14]. ii) Hybrid models use a contin-
uum description for the growth medium as well as for the
solutes, and individual descriptions of bacteria. One of
the best known models [11,15,16] is based on cell clusters
(groups of cells consisting of up to 104 cells) that have
their own rules for division, growth, and interaction, and
orient their movement according to various concentration
gradients (nutrients, chemotactic signals, and so on)
within the medium. In a recent study, Gerlee and Ander-

son presented yet a different kind of hybrid model in
which individual cells were represented by cellular autom-
ata fixed to regularly spaced locations representing the
culture medium [17]. A considerable part of computa-
tional efforts has been devoted to the simulation of
branched colony patterns, which various microbes are
known to produce under harsh growth conditions
[12,15,18,19]. Even though the formation of bacterial col-
onies is a complex process that requires a variety of mech-
anisms (including flagella, pili, secretion of surfactants,
siderophores, and enzymes), both continuum models
and particle-based hybrid models can reproduce the frac-
tal-like branched patterns characteristic of mature bacte-
rial colonies.

Here we address the onset of quorum sensing-mediated
swarming in P. aeruginosa. We consider the initial phase of
swarming as being controlled by threshold levels of AHL
signals and secreted factors (public goods), under the dual
control of regulatory proteins and signal synthases of the
LasI/R and RhlI/R AHL QS systems. We compare the
swarming behavior of the wild-type strain and quorum
sensing knock-out mutants in the presence and absence of
exogenous AHL signal molecules. We present a simplified,
agent-based model for describing the onset of QS, based
on a threshold-dependent representation of the early reg-
ulatory events and demonstrate that our simplified model
provides a qualitatively correct description of the swarm-
ing response.

Results
Biological model
We compare the behavior of environmentally isolated P.
aeruginosa PUPa3 and two derivative AHL QS mutants
(Table 1). In mutant P. aeruginosa SN (signal negative),
both the lasI and rhlI N-acyl homoserine lactone (AHL)
synthase genes were inactivated. Thus, strain SN is unable
to produce two specific types of signal molecules (C4-AHL
and C12-3-oxo-AHL); however, it is expected to respond
if these are added to the growth medium. In mutant SB
(signal blind) on the other hand, the LuxR family,

Table 1: Genotype and expected phenotype of P. aeruginosa PUPa3 and its knock-out mutants

Cells Genotype Expected phenotype

Signal Factor Swarming

LasR LasI RhlR RhlI Produces Responds Produces Responds Alone With added signal

WT + + + + + + + + + +

SN + - + - - + + + - +

SB - + - + (+) - - + - -
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response-regulator genes lasR and rhlR were both inacti-
vated, thus SB is unable to respond to the AHL signals. We
tested the mutants on swarming agar plates, that is, semi-
viscous plates poor in nutrients. These are relatively harsh
growth conditions as compared to plates rich in media
(Methods). The cells were found to behave as expected
according to their genotype (Table 1), and their behavior
will be further discussed below, while being compared
with the computational model (Figures 5 and 6, further
below). Briefly, P. aeruginosa cells moved as previously
reported, spreading on a swarming plate, accelerating bio-
mass production, in a typical dendritic colonial appear-
ance. Similarly to other strains, AHL QS was pivotal for
swarming in P. aeruginosa PUPa3, probably through the
regulation of several factors, including the RhlI/R-regu-
lated rhamnolipid production. Swarming of P. aeruginosa
has been associated with both flagella and type IV pili,
which mediate the actual movement, as well as with
rhamnolipids that allow cells to overcome water's surface
tension. The results confirm that QS regulation in the
rhizosphere colonizer PUPa3 strain is similar to that seen
in clinical isolates of P. aeruginosa.

Computational model
We constructed a simplified logical framework that incor-
porates the salient features of the early regulatory events
(Figure 1B, above). In this scheme, there is only one signal
molecule S, which corresponds to C4-AHL and C12-3-
oxo-AHL of P. aeruginosa. The cellular concentration of
this signal is in equilibrium with the environment. In vivo,
AHL signals activate the synthesis of various secreted fac-
tors, such as the biosurfactant rhamnolipid, which is nec-
essary for the cells to move on the surface, enzymes, such
as proteases that digest macromolecular nutrients in the
environment, antibiotic compounds that fend off compe-
tition by other bacteria, siderophores that help collect
metal ions from the environment, and so on. In our sim-
plified model, all public goods are included in a general-
ized secreted factor F. This factor is in equilibrium with
the environment and stimulates the cells' metabolism and
movement. If the concentration of F is greater than a given
threshold, the cells move and divide faster and consume
more nutrients, that is, they initiate swarming. The model
has three states: i) the solitary or planktonic state, ii) the
activated state, and iii) the swarming state (see Methods
for more details). In the solitary or planktonic state, cells
produce low levels of signal molecules, and have low rates
of movement and metabolism. Once the level of S reaches
a threshold, the cells enter the activated phase in which a)
the signal production increases and b) production of
secreted factors ("public goods") starts.

Algorithmic model
We chose an agent-based scenario to simulate the move-
ment of cells on a 2D agar surface (see Methods). During

each time interval, the cells move to a new location, con-
sume nutrients, and produce AHL signals. The cells make
steps of equal length in a randomly selected direction, and
if they get into a region with insufficient supply of nutri-
ents, they enter a stationary phase. If nutrients are availa-
ble locally, the cells ingest them in terms of "energy", and
if the stored energy exceeds a certain level, they divide.
This is a highly simplified scenario, in which the cells do
not sense the nutrients' concentration or gradient, and/or
the AHL signals, and they do not orient their movements
as a function of these gradients. Rather, they simply switch
on and off their genes in a threshold-dependent manner.
At the beginning of the simulation, the cells are placed at
the starting line of a longitudinal track representing the
agar plate (Figure 2). In contrast to full colony morphol-
ogy models, this setting includes only a small portion of
the colony. During the simulation, the randomly moving
cells spontaneously form a front or "activation zone" in
which the level of public goods is sufficient for keeping
the cells in an activated state. This zone then spontane-
ously moves in one direction, i.e., towards the nutrient-
rich region. At given intervals during the run, the cell den-
sity is calculated by counting the cells within selected
areas or the race track. In addition to the moving cell
agents, the model includes diffusible materials (nutrients,
AHL signals) that are allowed to diffuse at each time
point. The density of the cells and the concentration of the
AHL signals show irregular bell-shaped curves (Figure 2,
inset). In the above model system, all quantities are
defined in arbitrary units, and only a few "realistic"
choices are made. For instance, we assume that AHL signal
production substantially increases as the cells become
activated [20]. Also, we assume that the production of the
AHL signal requires relatively little energy, while the pro-
duction of factor F is much more energy-expensive. This is
based on the well-known fact that swarming requires mas-
sive quantities of secreted factors such as enzymes,
siderophores, and surfactants produced by a large number
of genes, as opposed to the relatively few signaling genes
[2,5].

Basic properties of the in silico model
Typical simulation snapshots are shown in Figure 3A. The
actively swarming cells are shown in green and the active
zone, that is, the zone in which the cells are active and
swarming, is clearly visible throughout the simulation.

Swarming and non-swarming models show distinctly dif-
ferent pictures in this scenario. Swarming cells form colo-
nies that move relatively fast, the number of cells present
in the advancing front increases and reaches a plateau that
corresponds to the maximal cell density allowed. On the
other hand, non-swarming colonies can not move, so
their number can increase only as long as nutrients are
locally available. As nutrients are depleted, the number
Page 4 of 16
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decreases to a baseline level that can be supported by the
diffusion of nutrients (not shown). The definition of QS
is that cells respond to cell density. Figure 3B and 3C show
that the model-population in fact acts as such a density
switch. At a given cell density the cells get activated i.e.
they start to produce factors (green line), and subse-
quently the cells also start to swarm (red line). It is worth
to note that the starting population is random (both in
terms of locations and in terms of metabolic states). Nev-
ertheless, this random population shows a coordinated
behavior as it switches from solitary to swarming state.

In the modeling experiments presented so far, the bacte-
rial front followed the availability of nutrients. On the
other hand, nutrients and signals are both required for
movement, which implies that the cell agents are in prin-
ciple also capable of following a trail of exogenous sig-
nals. The example in Figure 4 illustrates this property of
the model. Thus it seems that a simple gene-activation
model is sufficient to explain the response of bacteria not
only to cell density, but also to exogenous cues such as e
are known to play roles in host/symbiont and plant/path-
ogen interactions.

Swarming of P. aeruginosa in vivo and in silico
The behavior of wild-type P. aeruginosa PUPa3 as well as
its mutants is compared in Figures 5, 6. In the absence of
exogenous AHL signal, only the wild-type cells swarm

(Figure 5). If the exogenous AHL signal is added to the
plates, the SN mutants will also swarm, both in vivo and in
silico, yet the SB mutants will not (Figure 6). These results
show that i) the genetic modifications produced the
expected phenotypes (Table 1), and ii) the simplified reg-
ulatory scheme built into the agent-based model provides
a qualitatively adequate description of the events.

Kinetics and competition in silico
The in silico model makes it possible to follow the kinetics
of cell populations during the simulation. Swarming
experiments show typical saturation-type kinetics (Figure
7) that can be described in terms of approximate initial,
transient and steady-state phases. Using the numerical
values extracted from the modeling experiments, we can
define the swarming fitness of a bacterium (see methods).
Briefly, the swarming fitness of a bacterium is propor-
tional to its population size and with the speed of the
front advancement. As both of these quantities are in arbi-
trary units of the model, it is more appropriate to calculate
a relative swarming fitness in comparison with a refer-
ence, such as the wild type. Using this relative fitness
measure, one can construct models that grow faster or
slower than the wild type. Figure 7D shows the competi-
tion of such models. As can be expected, the fitter (faster
growing) model simply outcompetes less fit (slower grow-
ing) model. It is also worthwhile to note that nutrients,
signals (information) and secreted factors (public goods)

Model outlineFigure 2
Model outline. The model describes the movement of cells on a longitudinal segment of the plane, discretized into squares 
(A). On the longitudinal sides, the track has periodic boundary conditions with respect to cell movement and diffusion. At the 
beginning (t = 0), the cells are placed at the starting point at random positions. At each time point, the cells carry out the algo-
rithm described in the Methods section (Figure 8). As a result, the cells form an advancing front, and at each time T, the distri-
bution of cell density as well as signal concentration is determined. The distributions found are irregular and asymmetrical 
(inset C).
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are asymmetrically distributed within the activation zone
(Figure 2, inset), i.e. some parts of the activation zone will
be less favorable for growth than others. In accordance
with this, we see the less fit cells accumulating in regions

less abundant in nutrients and public goods (insets 1 and
2 in Figure 7D).

In our model system the cells are maintained by a flux of
nutrients provided by diffusion. In other terms, their sur-
vival depends on a balance between nutrient consump-
tion and diffusion. We can break this balance in two
different ways: a) by decreasing the flux of nutrients (i.e.
decreasing the nutrient concentration or decreasing the
diffusion constant of the nutrients), or b) making the cells
over-consume nutrients. Figure 8 shows a model of the
latter strategy that leads to a collapse of the swarming pop-
ulation. As we increase nutrient intake to 10 fold as com-
pared to the WT model, population size decreases 4 orders
of magnitude, and the migration slows down. The kinetics
shows increasing fluctuations – also seen in a variety of
other, non-biological model systems – that finally leads to
collapse. The long-range swarming fitness of the popula-
tion (Eqn. 3) first increases with over-consumption but
after a limit it decreases to zero (Figure 8, inset). It is
important to note that the steady population in our longi-
tudinal model corresponds to a colony that steadily grows
in two dimensions. In other terms, the model predicts a
steady, i.e. sustainable colony growth that can however be
collapsed by overconsumption.

Model behaviorFigure 3
Model behavior. A) Snapshots of the advancing front. The green area shows cells in the swarming state. The concentration 
of signal S and factor F follows the movement of bacterial cells. The lower panels show the very first steps of a simulation start-
ing from a very small population (200 solitary cells). B) Percentage of solitary (blue), signal-producing but not yet swarming 
(green) and swarming (red) cells in a population. Note that after a certain time, practically all cells are in the swarming state. C) 
Dependence of the cells' state on cell density. Note that nearly beyond a certain cell density, all cells switch to the swarming 
state, i.e. the model acts as a density-switch.
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Discussion
In this work, we describe a simple, minimalist model suit-
able to study the QS behavior of the rice-colonizing bac-
terium P. aeruginosa PUPa3. In this model, in which the
bacteria move randomly and the intensity of this motion
is under the control of two diffusible materials, the QS sig-
nal S and the secreted factor F. The model describes the
fundamental properties of QS bacteria, such as i) density-
dependent onset of the colony-movement, ii) displace-
ment towards nutrients. This is achieved without the
explicit use of concentration gradients and (hypothetical)
chemotactic factors.

Another goal of this study was to gain insight into the
kinetics of the computational model. We found that the
populations follow a simple, saturation-type kinetics
from which one can extract the parameters necessary to
define a swarming fitness, the property of a cell to reach a
given location by swarming. Models with higher swarm-
ing fitness were found to outcompete their less fit counter-
parts.

A characteristic feature of our model is the transition from
a small, completely random population to an "organized"
(i.e. asymmetrically distributed) swarming population.

This swarming population can be described as an active-
zone, in which there is high density of cells, and nutrients,
signals and secreted factors are present in concentrations
sufficient to support swarming. The active zone is asym-
metrical, i.e. cell density as well as chemical concentra-
tions are not uniformly distributed within the zone.

We were explicitly interested in comparing the behavior of
the rice-rhizosphere-colonizing bacterium P. aeruginosa
PUPa3 with its mutants, where either the production of
the AHL quorum sensing signals (SN) or the ability to
respond to the signal was inactivated (SB). We found that
the swarming behavior of the mutants is drastically differ-
ent from the parent wild type, with neither SN nor SB
being able to swarm. However, SN will swarm on agar
plates to which the AHL signal molecules have been exog-
enously added. This behavior confirms that the regulation
of swarming by AHL QS in environmental strain PUPa3 is
comparable to the one observed in clinical isolates of P.
aeruginosa, moreover the behavior was reproduced by our
minimalist in silico model.

The major differences between our model and the previ-
ous computational approaches can be summarized as fol-
lows: a) we are interested in the early stages of swarming,

Swarming of P. aeruginosa in vivo and in silicoFigure 5
Swarming of P. aeruginosa in vivo and in silico. The cells' phenotype is indicated on the left. The swarming plates (center) 
were developed as described in the Methods section. The computer model (left) shows the behavior of the in silico model, 
which is in agreement with the lab. Green color was used for the wild-type, blue for SN, and red for SB cells. (+) indicates that 
SB cells have a basal (solitary) level expression of signal S, that is preserved in all states but does not increase upon the onset of 
swarming.
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where the functions of a few, key QS genes and gene prod-
ucts determine cell behavior; b) instead of studying pat-
terns of colony morphology, our goal is to study the onset
of swarming in terms of population size and speed of
advancement; c) we study this phenomenon using a spe-
cific biological object, the rhizosphere colonizer P. aerugi-
nosa PUPa3 and its engineered mutants; d) the
computational model is based on individual cells with
threshold-based response behavior. This highly simplified
regime was chosen partly because we are interested in the
qualitative behavior of the system at the onset of QS
(swarming on or off, migration fast of slow), and partly
because of the speed of the computation; e) the cell-agents
move randomly, without being influenced by concentra-
tion gradients and by the movements of other cells; f) we
use a longitudinal plate-arrangement wherein the move-
ment of the front can be followed along one dimension.
The small size of the longitudinal track allows one to use
accurate, computationally-intensive methods for calculat-
ing diffusion. On the other hand, our model can also
reproduce branched patterns (not shown), but the longi-
tudinal track allows us to calculate speed values in a com-
putationally more efficient manner.

Conclusion
We presented a simple model for the swarming of P. aeru-
ginosa, wherein the random motion of individual cells is
under a threshold-dependent on/off regulation by AHL
signals and secreted factors (public goods). In this model,
the cellular models are not endowed with self-orienting
abilities; however, they self-organize into a community
that is capable of spontaneously following environmental
signals. The model gave a qualitatively correct description
of the behavior of P. aeruginosa PUPa3 as well as derivative
genomic knock-out mutants, in which either signal pro-
duction (SN) or signal-response (SB) were inactivated.
The experimental results confirm at the same time that QS
regulation in the rhizosphere colonizer PUPa3 strain is
similar to that observed in the clinical isolates of P. aeru-
ginosa.

Methods
Bacterial strains and growth conditions
The P. aeruginosa strain PUPa3 used in this study is an
environmental rice rhizosphere isolate from India [21]. In
order to construct the signal negative (SN) mutant of
strain PUPa3, both lasI and rhlI were inactivated via a two-

Swarming in the presence of exogenous signalsFigure 6
Swarming in the presence of exogenous signals. The outline of the experiments is the same as in Figure 4, except that 
the colonies were left to develop in the presence of exogenous AHL signals. (In the lab experiments, AHL signals were added 
to swarming plates, to a final concentration of 2 μM, whereas in the computer simulation, the signal concentration was simply 
kept above the threshold level). (+) indicates that SB cells have a basal (solitary) level expression of signal S, that is preserved in 
all states but does not increase upon the onset of swarming. Note that SN swarms in response to the signal, while SB does not. 
The behavior of the wild-type was approximately similar to that observed in Figure 5.
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step insertional inactivation using suicide plasmids
(Steindler et al., submitted). Similarly, the signal blind
(SB) mutant was constructed by inactivating both the lasR
and rhlR genes in strain PUPa3 by insertional inactivation
using suicide plasmids (Steindler et al., submitted).

Swarming assays were performed using M8 medium
plates (M9 salts without NH4Cl) (Kohler et al., 2000) con-
taining 0.5% agar and supplemented with 0.2% glucose
and 0.05% glutamate (Murray and Kazmierczak, 2006).
The inoculation was performed with a sterile toothpick
dipped in a bacterial suspension of OD600 2.7. Next, plates
were incubated at 30°C overnight, followed by room tem-
perature incubation for additional 48 hours. AHLs were
either acquired from Fluka-Sigma-Aldrich or from P. Wil-
liams (University of Nottingham, UK) and added exoge-
nously to swarming plates to a final concentration of 2
μM. P. aeruginosa was also grown in LB rich media (Sam-
brook et al., 1989) with 0.5 w/v of agar.

Description of the computational model
We designed an agent-based model for representing the
cells of P. aeruginosa. In this model, each cell is an auton-
omous agent that regulates its own behavior depending
on the concentration of nutrients as well as AHL signals
(S, F) found in its environment. The cells perform random

movements on the 2D plane, and interact with each other
via AHL diffusible signals. Each parameter in this system
is defined in arbitrary units (further details are given in the
Additional file 1).

Each autonomous agent carries out a simple algorithm
(Figure 9A). The functions performed by the cell are regu-
lated in a threshold-based manner according to the regu-
latory scheme shown in Figure 1A. In the solitary or
planktonic state (P), there is a baseline level of signal S
production. As the environmental concentration of S
exceeds the threshold, the production of S increases 5–15-
fold (V.V, unpublished results on P. aeruginosa PUPa3),
and the production of secreted factor (F) starts. This is the
activated state (A). As soon as the concentration of F in the
environment surpasses a threshold, the cells increase their
nutrient intake and move faster, resulting in the swarming
state (SW). It can be conceived that the level of S falls
below threshold while F is still above it. In this case, the
cells move and metabolize at the rate of the swarming
state, but production of S falls back to the lower level.

The process is governed by the energy balance of the cells
(Figure 9B). At each step, the cells take up a certain
amount of nutrients, defined in arbitrary energy units. The
energy is spent on maintenance ("metabolism"), produc-

Simulation of mutants with different rates of division as compared to the wild-type P. aeruginosaFigure 7
Simulation of mutants with different rates of division as compared to the wild-type P. aeruginosa. The mutant 
models are similar to the wild type except that the energy expenditure is altered, as compared to the wild type. R is the rela-
tive division rate, SFL and SFS are the long-range and short-range swarming fitnesses calculated according to Eqn 3 and 4, 
respectively. A) Population size; B) Speed of front advancement; C) The phases of a simulation experiment (schematic sketch). 
D) The initial phase of population growth (example).
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tion of S and F, while the remainder is stored. A cell's
stored energy can thus be described as

E(t + 1) = E(t) + E(food) - E(S) - E(F) - E(metabolism),
(1)

where E(t) is the stored energy at time t, while the other
terms represent the energy expenditure corresponding to
nutrient intake, AHL signal production, nutrient produc-
tion and metabolism, respectively. If the stored energy
exceeds a threshold, the cell divides. If the stored energy is
not sufficient to cover the expenditures, the cell will enter
into a stationary phase i.e. it irreversibly ceases to func-
tion. The agents proceed via random steps, where a step of
a given length is taken in a randomly chosen direction. In
the swarming state the cells move approximately 3 times
faster than in other (solitary or activated) states.

Diffusing materials
Initially, the environment is represented in terms of a sin-
gle diffusible material N, denoting all nutrients. In the
process of the simulation, cells will produce other diffusi-

ble materials, such as signal S and factor F. The concentra-
tion of such a component u is described by the equation:

where D and R are the uniform diffusion and decay con-
stants, respectively. We assume that nutrients diffuse but
do not decay (R [nutrients] = 0), but S and F both diffuse
and decay. Equation [2] is a typical reaction-diffusion
equation that is solved independently for nutrients and
signals on a rectangular grid with periodic boundary con-
ditions using an explicit finite difference method, at each
time point of the simulation.

The environment is represented as a 2D longitudinal track
with periodic boundary conditions on the longitudinal
sides (Figure 2). The plane is discretized into squares, and
the concentration of diffusible materials is considered
constant within the square. This setup corresponds to a
longitudinal cylindrical surface, starting with an impene-
trable "wall" at the beginning of the longitudinal "race-
track". At the beginning of the run, the cells have a
randomly chosen amount of stored energy, and an equal
number of such cells are placed to randomly chosen loca-
tions in each square along the starting line. The colony
boundary is represented by a line separating the cell col-
ony from the environment. Initially, this separating line
will be parallel with the starting line, one square away
from it. As the simulation progresses, the cells will move
randomly within the boundary while both F and S diffuse
outside the boundary. The advancement of the boundary
was modeled according to a modified principle adapted
from Cohen [22], that is, the cells' escape attempts were
counted for each square of the outer square adjacent to the
boundary, by incrementing a boundary advancement
counter BI with a value of 1+ (k * F), where F is the con-
centration of the factor and k is a constant of proportion-
ality. If BI reaches a threshold, the border moves past the
square in question. As a result, the border advances from
square to square.

When compared to models designed to describe colonial
patterns, our model is highly simplified, since it is thresh-
old-regulated and does not take into account concentra-
tion gradients.

Evaluation of modeling experiments
We evaluate the results in qualitative terms, and whenever
possible, on a comparative basis (e.g. in comparison with
the wild type cells. Figure 7 (main text) shows a plot of
and population size (Figure 7A) and speed (Figure 7B) as
a function of the simulation time (arbitrary units). By way
of analogy with reaction kinetics, it is convenient to divide
the curves into approximate initial, transient and steady-

du
dt

D u Ru= ∇ −2 , (2)

The effect of over-consumption on the swarming populationFigure 8
The effect of over-consumption on the swarming 
population. The effect of over-consumption on the swarm-
ing population. A) Relative population size (compared to that 
of WT model);B) Relative speed (compared to that of WT 
model). Over-consumption is expressed as nutrient-intake 
divided by that of the WT. The long range swarming fitness is 
plotted as a function of over-consumption in the inset in B).
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state phases. As swarming occurs in space, we use the
terms "short-range" for the initial phase and "long-range"
for the steady-state phase, respectively. The population
size and the speed observed in the steady state are inde-
pendent of the size of the starting population. It is noted
that the steady state does not always appear, some model
populations (such as the very small populations, or mod-
els with inefficient metabolism) die out after a transient
swarming phase.

For the characterization of swarming ability, we define
swarming fitness as a measure of how efficiently a cell
reaches a certain location in space. The swarming fitness
of a cell type is proportional to the population size p and
to the speed v observed in the steady state. We can then
define the relative swarming fitness of a mutant as

where the subscripts m and wt refer to mutant and wild
type respectively. For the steady state, p and v values can
read from the curves, e.g. we can read averaged values cal-
culated for a longer period of time. The resulting SF value
will characterize the mutant's ability to reach a long-range

destination. In principle, SFlong_range is independent of the
starting population size, nevertheless we routinely calcu-
lated it by using equal starting populations for mutant
and wt. The short range swarming fitness, on the other
hand, refers to the ability of a cell to reach a destination in
an early stage of swarming. Since we can approximately
say that the movement of any colony at the onset is very
small, so we use the approximation vm ≈ vwt. so the short-
range relative swarming fitness can be calculated as

where pm and pwt indicate the swarming population size
taken at a very early time point such as 200 time steps after
the onset of swarming (Figure 7C, inset). As the short
range fitness depends on the initial population sizes so we
determined it using strictly identical initial starting popu-
lations typically 1000 cells of 2 different models, distrib-
uted randomly. Examples of calculated values are shown
in the inset in Figure 7C.

Figure 7C and 7D show examples of mutant models that
differ in their relative division rates. In our model, the
speed of the front movement is mainly regulated by the

SF
pm vm

pwt vwt

rel = ×
×

, (3)

SF
pm
pwt

short range
rel

_ ,= (4)

Properties of cell agentsFigure 9
Properties of cell agents. A) Description of the algorithm carried out by the agents at each time point. At 'STOP', the cells 
irreversibly enter a metabolically inactive stationary state. The functions depend on the state of activation of each mutant and 
these are regulated in a threshold-based manner by the signal levels. B) Energy balance of the various mutants studied. The 
numerical values are shown in Table 1 and described in the Additional file 1. "Swarming state" includes two states (with S pro-
duction "on" [swarming level] or "off" [solitary level]) (Table 1).
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rate of division, which is, in turn, dependent on the
amount of energy that the cells are capable of storing (sav-
ing) at each step. Therefore, cells that spend less energy
(have less metabolic costs) will be more viable and com-
pete out the cells that spend more energy, as shown by the
example in Figure 7D. In these calculations, the rate of
division (average division per cell per time point) can be
determined directly for the entire experiment by counting
the divisions for a given population. The relative division
rate, R, was then calculated by dividing the division rate of
a mutant with that of the wild type. The energy consump-
tion was calculated as E(S) + E(F) + E(metabolism), and the
relative energy consumption E was calculated by dividing
the energy consumption of the mutant with that of the
wild type. The energy consumption was then altered so as
to produce mutant models with different relative swarm-
ing fitness values. The asymmetrical distribution of the
two species within the front (insets 1 and 2 in Figure 7D)
shows that the less successful species is pushed towards
the regions containing less nutrients.
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Reviewers' comments
Reviewer 1
Gáspár Jékely, Max Planck Institute for Developmental Biology, 
Tübingen, Germany
Reviewer's comment: This paper describes a simple com-
putational model for quorum sensing and a switch to
swarming behaviour in Pseudomonas aeruginosa. The paper
is interesting and well written. The most important find-
ing is that under certain conditions it is possbile to obtain
a moving „activation zone" of swarming cells that moves
towards nutrients without invoking directional response,
such as chemotaxis. My question is whether such condi-
tions are met in real life, in particular the diffusion coeffi-
cients used. In the model the activation zone moves in
one direction, because the nutrients are depleted behind
the front. The extent of such depletion will be influenced
by the diffusion constant of the nutrients. If nutrient dif-
fusion is fast with respect to cell division rates and swarm-
ing rates, then I suspect that the activation zone will not
move towards the source of nutrients and the model fails.

I think it would therefore be important to test different
diffusion constants for the nutrients and see whether the
parameters which are able to maintain directional swarm-
ing, using realistic cell doubling times and swarming
speed, are near the real values in tissues or agar plates.

Authors' response: The suggestion is in line with our
modeling experiences. Namely, the population is main-
tained by the flux of nutrients provided by diffusion i.e. its
survival depends on a balance between nutrient consump-
tion and diffusion. We have added a new paragraph and a
figure in which we show that breaking this balance abol-
ishes swarming, exactly as the reviewer predicted.

Reviewer's comment: The simulations are performed in a
2D longitudinal track (a surface of a slender cylinder),
which is almost in 1D. This approach has certainly its
merit, especially when measuring the advancement of the
active zone. However, if the model is correct, it should
also reproduce the dendritic colony morphologies when
extended to two dimensions. Using the computational
framework such an extension seems to be straightforward,
just the modelled area should be increased. I presume that
dendritic morphologies develop because cells move ran-
domly and the initiated advancing fronts deplete the
nutrients around them.

Authors' response: In fact, the modell can provide den-
dritic patterns, as shown by Figure 10. We used the 1D
arrangement since we are interested in the speed of front
movement (fast growth, slow growth, etc.), which is not
straightforward to define for uneven, dendritic patterns.

The realism of such dendritic patterns is questionable,
however, since, for computational reasons, we can not
model large populations of cells such as present on a sin-
gle agar plate. Moreover, we can suppose that not only a
few genes, but a large part of the genome may contribute
to such patterns. This is why we thought about limiting
our interests and our interpretations to a smaller context,
i.e. the onset of swarming.

Reviewer's comment: The model assumes a threshold sig-
nal concentration to activate the quorum sensing
response. Has this been demonstrated experimentally
before? If not, it would be easy to test such threshold
response using the swarming experiments in the SN
mutants, using different concentrations of the signal.

Authors' response: The genetic networks underlying QS
are in fact considered to act as a two-state switch (Gory-
achev et al. Transition to quorum sensing in an Agrobac-
terium population: a stochastic model. PLOS Comp Biol,
1(4), 2006, 265–275). This is a working hypothesis of our
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minimalist model, and our goal was to simplify the proc-
ess as much as possible.

We thank the referee for the interesting comments and
questions.

Reviewer 2
L. Aravind, National Center for Biotechnology Information, National 
Library of Medicine, National Institutes of Health, Bethesda, MD 
20894
Reviewer's comment: Bacterial quorum sensing and
swarming are both interesting topics of study in them-
selves, and also of considerable significance to understand
certain behaviors of pathogens. Previously there has been
considerable effort in using hybrid models (i.e. cells as
stochastically orienting entities and molecular influences
as continuous density fluctuations) in describing branch-
ing and nested patterns of colonies. Here the authors
apply the same to describe swarming in Pseudomonas aer-
uginosa.

The salient features of their model are: 1) Its simplicity
allows it to be easily understood and potentially repro-
duced. 2) It generates a good qualitative match with
experimentally observed behavior of the wild-type and
that of mutants. 3) Most interestingly they are able obtain
the displacement towards environmental cues or nutri-
ents as an emergent property despite starting with cells
without self-orienting abilities. That this behavior
emerges is something which could be tested experimen-
tally – if the model indeed survives such experimental
tests, such models could have a general implication for
understanding emergent population behaviors in bacte-
ria. 4) The concept of swarming fitness developed here is
a useful construct to directly study genes that might affect
this property.

Primary criticisms: For the model to acquire greater bio-
logical relevance it would be useful if it had an "internal
component" – i.e. the cells are provided with a regulatory
network that recapitulates the experimentally well-under-
stood QS network in Pseudomonas. Even if it might be too
much redo everything with such an internal network
model for this work, it would be useful if the authors actu-
ally lay out its essential elements here.

Authors' response: Our aim is to develop a simplistic,
minimalistic model in which the internal genetic network
is represented simply as a binary switch. Our main goal is
to explore what this minimalist model can do and
describe the fundamental properties of the model. This
model is not meant to be realistic in any sense, we only
seek to reproduce the on/off behavior of fast or slow
migration at the onset of swarming. A more detailed
genetic network is a different approach that we can con-
sider in later studies.

Reviewer's comment: This model with a relatively simple
set up explains certain behaviors as emergent without
assuming any kind of in-built cell-cell interaction. But is
this reflective of the natural situation in a proteobacte-
rium with such a large genome? Cells potentially behave
differently towards kin as against non-kin. If such interac-
tions are included do we observe differences (The reason
this question comes to mind is due to the hybrid model
being used, where such things could be included)?

Authors' response: Competition experiments are possi-
ble and will be the subject of further, more detailed stud-
ies. This is now mentioned in the text.

Reviewer's comment: Finally, the question of complete-
ness of such a model for the whole system does come up.
The authors look at a 1D element but the experimental
results shown to the side are from colony with nested
structure. Are the assumptions provided here enough to
explain the colony morphology also or do they need addi-
tional explanations?

Authors' response: In fact, the modell can provide den-
dritic patterns, as shown by Figure 10. We used the 1D
(more exactly: cylindrical) arrangement since we are inter-
ested in the speed of front movement (fast growth, slow
groth, etc.), which is not so straightforward to accurately
calculate for uneven, dendritic patterns

Reviewer's comment: Minor points: There are typos/
grammatical slips throughout the paper. A thorough
proof-reading will improve the article.

Authors' response: We made corrections. We wish to
thank the reviewer for the interesting questions, com-
ments and suggestions.

A dendritic pattern produced the hybrid modelFigure 10
A dendritic pattern produced the hybrid model.
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Reviewer 3
Eugene V. Koonin, National Center for Biotechnology Information, 
National Library of Medicine, National Institutes of Health, Bethesda, 
MD 20894
Reviewer's comment: Netotea et al. describe a simple
mathematical model of quorum sensing in Pseudomonas
in which the behavior of individual bacterial cells is lim-
ited to random movements, without the ability of self-ori-
entation but swarming nevertheless occurs as an emerging
phenomenon that is predicated on the threshold-depend-
ent response of bacteria to the diffusible quorum signal
(AHL) and secreted factors. Notably, it is shown in the
same paper that knockout of genes involved in the synthe-
sis or sensing of AHL yields results compatible with the
model. This seems to be not just an interesting piece of
work but, actually, an important piece of work the result
of which, in my opinion, should be taken as the null
model for explaining the fascinating behavior of bacteria
during quorum sensing.

Authors' response: We thank the reviewer for the valua-
ble comments.

Reviewer 4
Artem Novozhilov, National Center for Biotechnology Information, 
National Library of Medicine, National Institutes of Health, Bethesda, 
MD 20894 (nominated by Eugene Koonin)
Reviewer's comment: In this manuscript S. Netotea et al.
provide a simple computational model of the initiation of
the bacterial swarming by means of quorum sensing. The
model the authors employ is of a hybrid type, which
means that they model cells as discrete entities subject to
random movement, whereas the diffusion of nutrients,
signals and public good are represented as continuous dif-
fusion equations. The authors base their model on an
explicit regulation of the bacterial behavior depending on
the density of the cells. The main computational findings
are illustrated by in vitro experiments, which show good
qualitative agreement with modeling results. In particular
the authors show that the concerted cell movement occurs
in their model without bringing in any self-orientation
abilities such as, e.g., ability to move on the gradient of a
chemotaxic signal. The text is written very clearly, and the
authors make good work explaining their algorithm,
experiments, major results, and shortcoming of the cho-
sen approach. Overall, I find the subject extremely inter-
esting and the approach is worth pursuing.

My major criticism concerns the fact that, in my view, the
model is somewhat oversimplified. In particular, the state
of a given cell is defined using explicitly given condition:
if the concentration of the signal exceeds some threshold
quantity then the production of the signal increases in a
deterministic way prescribed by the algorithm (a side
question: in your model the production of S increases in

5–15 times whereas it is well-accepted that 100-fold
increase is a conservative estimate [Goryachev et al. Tran-
sition to quorum sensing in an Agrobacterium popula-
tion: a stochastic model. PLOS Comp Biol, 1(4), 2006,
265–275]?).

Authors' response: The picture of quorum sensing has a
threshold level of signals is generally accepted in the field
(Fuqua et al, Regulation of Gene Expression by Cell-tio-
cell communication: Acyl-Homoserine Lactone Quorum
Sensing. Annu. Rev. Genet. Volume 35, 439–468) so we
accepted it as a working hypothesis. Simplification was
one of our main goals as we believe that simplistic (mini-
malistic) models are useful to explore a core set of proper-
ties underlying a particular behavior. To give an example,
lattice models of protein folding are not realistic in any
way, yet they provided interesting insights. We believe
that such models are not designed to be accurate represen-
tations of particular realities. Rather they are abstractions
designed to represent general and in some cases emergent
sets of properties and patterns.

The figure of 5–15 fold increase in signal production is
based on our experimental gene expression results
obtained on our own laboratory strain. This is now men-
tioned in the text. Such values seem to depend on the
strain and on the conditions.

Reviewer's comment: It would be more interesting to
model a gene network, which works as a stochastic switch
(say, similar to the one, considered in Goryachev et al.
Transition to quorum sensing in an Agrobacterium popu-
lation: a stochastic model. PLOS Comp Biol, 1(4), 2006,
265–275). In this case it is possible to follow two mode-
ling processes at a time (onset of the quorum sensing at
the level of i)ndividual cells and the spatial distribution of
the cell population). Although I have to admit that this
model improvement might be well beyond of the present
manuscript.

Authors' response: This suggestion will be followed in
future studies; our current goal was to determine how a
stripped-down, simplistic model behaves.

Reviewer's comment: Demonstrated cell swarming can
be a consequence of the oversimplifications of the under-
lying processes. The authors mention in the text that 'A
conspicuous feature of our model is the transition from a
small, completely random population to an "organized
swarming population" '. I do not see any reason why, giv-
ing the set up of the model, one could not get this directed
movement from the areas of no nutrients to the areas with
high nutrients concentration. Yes, indeed, there is no
direct incorporation of any mechanism of directed move-
ment in the model, but, how it is well known, to produce
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traveling wave solutions (what is actually shown in Fig. 2)
there is no need to include chemotactic terms in the
model. Diffusion (random movement) plus nonlinear
reaction terms are enough. In this respect, it would be
interesting to consider fully deterministic model, i.e.,
replace the agent-based modeling of the cell movement by
a reaction-diffusion equation. In this case, traveling wave
solution can be studied analytically (at least, in principle,
I might be too optimistic here).

Authors' response: Hybrid models can be analogous to
continuum models described by reaction-diffusion equa-
tions. However, our goal was to set up a hybrid model in
which the behavior of individual cells can be studied and
compared with agar plate experiments. The construction
and characterization of a continuum model for this sys-
tem is a project yet to be done which is, in our view, out-
side of the immediate scope of the present work. But the
continuum models are in fact worth to study.

Reviewer's comment: And this brings in the second criti-
cism of the text. The modeling experiments are such that
can be done with the model, which is fully continuous.
The potential of the agent-based modeling is not taken
advantage of. The main advantage of the agent-based
modeling is an ease to include cell heterogeneity in the
model. There is still no generally recognized opinion that
quorum sensing per se (i.e., the reaction for the cell den-
sity) is the mechanism responsible for the concerted cell
behavior. There is an alternative explanation: diffusion
sensing (and what is actually modeled in the text, because
the decision to increase signal production is made on the
signal concentration, which diffuses in space and not on
the cell density). The major difference between quorum
sensing and diffusion sensing comes from evolutionary
point of view: quorum sensing is a collective property,
whereas diffusion sensing is an individual property. To
explain the evolution of the former one needs to explain
the evolution at the group level and also give an explana-
tion why cheaters (the cells that make other cells to pro-
duce public goods but do not spend their energy to
produce them by themselves) do not invade the popula-
tion (more on this in Hense et al. Does efficiency sensing
unify diffusion and quorum sensing? Nature Reviews
Microbiology, Volume 5, 2007, 230–239). I would sug-
gest setting the model experiment when the cell popula-
tion is heterogeneous; there are altruists and cheaters, and
consider the following question: can, actually, swarming
be a mechanism that allows survival of the altruists (it is
well known that the explicit spatial structure often medi-
ates survival of altruists).

Authors' response: In our system, diffusible materials are
the only means of communication, so cell-agents "sense"
elevated cell density via the accumulation of these. This

simple setup is apparently sufficient for the agents to fol-
low exogenous signals and form asymmetrically distrib-
uted populations. Our interpretations do not go beyond
this point. The suggestion of studying competing cell pop-
ulations is in fact a challenging task for the future, and, the
reviewer is right, this model was actually chosen with a
perspective of studying such, more complex systems.
However, we wanted to limit the scope of the present
work to the fundamental properties of the model. An
example of competition experiments is actually shown in
Figure 7D.

Reviewer's comment: It is also not quite clear why the
authors decided to model actually 1D spatial structure,
because it seems to be straightforward to implement the
same algorithm, starting from the center of some 2D area.
In this case the comparison of in vitro and in silico experi-
ments will be simpler. The obvious question is whether it
is possible to observe in the model the fractal structures as
in Figure 5 and 6 on swarming plates.

Authors' response: Our goal was to study the speed of
movement and this is more straightforward and also com-
putationally much more efficient in a small system (we
mention that, the system is not exactly 1D, the agents
migrate on an open-ended cylindrical surface). On the
other hand, our model can produce dendritic growth pat-
terns (Figure 10), but the modeling of vast cell popula-
tions such as observed on agar plates, is outside our
computational limits.

We wish to thank the reviewer for the interesting and chal-
lenging questions that, at least in our opinion, helped a
great deal to improve our manuscript.
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