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Abstract

Multispecies bacterial communities such as the microbiota of the gastrointestinal tract can be remarkably stable and
resilient even though they consist of cells and species that compete for resources and also produce a large number of
antimicrobial agents. Computational modeling suggests that horizontal transfer of resistance genes may greatly contribute
to the formation of stable and diverse communities capable of protecting themselves with a battery of antimicrobial agents
while preserving a varied metabolic repertoire of the constituent species. In other words horizontal transfer of resistance
genes makes a community compatible in terms of exoproducts and capable to maintain a varied and mature metagenome.
The same property may allow microbiota to protect a host organism, or if used as a microbial therapy, to purge pathogens
and restore a protective environment.
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Introduction

Multispecies microbial communities are a major form of life that
can coexist with many other organisms. It is well known that the
human body camries 10 times more microbial cells than the
number of its own cells One of the many intriguing properties of
microbial communities is that they can provide protection to their
host organism againgt infedtion or colonization by pathogens.
Examples include the protedive effedts of healthy gut miaobiota
[1,2], probiotics[3], or the ahility of a healthy rhizosphere to fend-
off plant pathogenic soil baderia [4]. Little is known about the
mechanisms of such a temitorial defense, which is especially
intriguing since it emerges in a wide variety of contexts. One of our
goals is to understand if horizontal gene trander (HGT) can
contribute to the emergence of protedtive properties in microbial
communities such as the human miaobiota.

Horizontal gene trander (HGT), ie. the process by which
badteria acquire genetic material from neighboring odls [5] is now
consddered the key to many important processes such as for
indance, the spreading of bacterial antibiotic resistance [6x8].
Dense miaobial communities, such as the human gut miaobiota
are now considered a hot spot of microbial gene trander [9]. This
is all the more interesting since it was recently discovered that the
rate of HGT is apparently eight to nine orders of magnitude faster
than previoudy thought [10]. As a result, rapid miaobial
evolution is now believed to be a mgjor factor that can shape
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the community structure of microbial consortia [11513]. The
spreading of resistance genes is espedally intriguing in this respect,
since members of a sable microbial community must be resistant/

tolerant to a great number of exoproducts that might be released
by the hundreds or thousands of species condtituting a consortium.
There is no doubt that the natural tolerance of bacteria towards
various dasses of chemicals may provide a shield against many
antimicaobial agents However, the spread of spedfic resistance
genesis alo a plausible mechanism that can explain the formation
of mutual resigance within multispecies consortia. We hypothesize
that the resistance of coexisting bacteria towards the exoproduds
present in a consortium is an important prerequisite for a stable
community. One of our goals therefore is to fallow the build-up of
this property via a computer simulation of HGT between
ocoexising species.

Competition between coexisting species is often dassified into
two broad categories: exploitative competition and interference
competition [14¢16]. Exploitative or srambling compeition
refers to species competing for exhaudible resources such as
nutrients or space. In contrad, interference competition is a
process by which competing spedes try to limit growth of
competitors via factors such as antimicrobial substances A
growing body of evidence from experimental and computer
simulation studies indicate that resource utilization by different
bacterial species can be both cooperative and competitive, and in
patticular that cheaters can abuse cooperating spedes [17].
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Recently it has been suggested that such a competition between
badteria leads dther to a oollapse of the commumity (competitive
exduson), or to a sable coexisence [18,19], and that the latter
can be mediated by a sharing of signals and public goods [20].
Genetic and mechanidtic studies of such interference competition
in bacteria are rdatively recent [21], even though there are many
well known dasses of antimiaobial compounds that bacteria
deploy against other species [22]. The work we report here is
oconcemed with this second dass of competition, interference
competition. We are particularly intereted in how species
coexiding in populated niches become accustomed to the
interference competition of the other species and how this
acclimation process, that we term community maturation, renders
a microbial community resstant againgt newcomers.

Here we show that smple computational agents capable of
taking over ressance genes from their immediate neighbors can
form dable and diverse communities that both produce and are
resistant to a large number of antimicrobial agents This complex
antimiaobial profile leads to a community capable of keeping
invading species away. At the same time, the model also explains
why a transplantation of a mixed microbial community into an
environment dominated by a single highly resstant spedes can
restore a stable and more mixed equilibrium.

Results

The model

Briefly, the formation of a multispecies microbial community
was smulated with randomly moving computational agents
(representing cells) that could randomly acquire ‘genes’ from the
neighboring agents they were in contadt with, i.e. that were within
a certain distance (Figure 1). The computational agents were
equipped with randomly generated genomes consisting of two
types of genes The first type encoded the production of an
antimiaobial agent (AM, or briefly an antimiarobial, see glossary;,
Tabhle 1) that could kill susoeptible bacteria. The other type of gene
encoded specific resstance against one specific AM. The rest of
the genome - induding the genes responsible for the metabolic
repertoire ¢ was not explicitty represented. In addition the
computational agents were naturally tolerant to a predefined
number of AMs termed the survival threshold (see glossary).

The agents moved randomly on a circular 2D surface and
acquired spedfic resistance genes from their immediate neighbors
via horizontal gene trandfer. Importantly, only specific redstance
cenes were exchanged during the smulation. The trandfer of genes
necessary for the produdion of an AM, or genes to confer inherent
residance, were set to take much longer than any modeling
experiment we intended to run. As a result, the pool of resistance
genes became homogeneous over the experimental period ie. all
species contained the same resigance genes. The other partsof the
genome remained congtant with each species producing a different
set of AMs and a different metabolic repertoire.

For community evolution experiments, a given number (usually
50) of "nawe' or darting agents were created first. The nawe
agents carried an equal number (typically 1 to 50) of randomly
chosen AM production genes as well as the matching specific
resisance genes. Asa result, all computational agents had different
genomes i.e. they represented different species. Before simulation
darted, the computational agents were randomly placed in a 2D
circular area, and then they were allowed to complete their life
cycles that included random movement, horizontal gene trander,
divison and/ or extinction. As the computational agents were also
allowed to divide during the smulations, certain species became
more abundant while others disappeared. The simulation was left
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to proceed until no more HGT occurred in the community (see
Methods for more details).

Simulation outcomes: Community genotypes

During the smulations we monitored the number of species
present, the number of AMs produced, aswell as the genome of all
computational agents. It became readily apparent that the
formation of a diverse comnumnity was primarily determined by
a few parameters: the speed of horizontal gene trandfer, the level of
nonspecific resigance as well as the number of contacts made by
the agents which in tum was determined by the dendty of the
acgent population and/or the speed of random movement.
Mapping out the parameter space then condded of canrying out
simulation experiments by varying agent parameters in a grid-like
fashion. This exercise required a large number of smulations, each
of them resulting in a final distribution of species and genomes to
be described in numerical as well as biological terms. In order to
facilitate evaluation, we carried out preliminary experiments in
order to explore the types of snulation outcomes. Interedtingly,
only two outcomes were observed (Figure 2):

A) Diverse comnunity (A in Figure 2). In this casg the agents
form a homogeneous, mixed population typically condding of
about 20 spedes that produce about 100 AMs. One particular
species produces only a few AMs but is residant to all AMs
produced within the community (1. in Figure 1B). This outcome is
analogous to the formation of a healthy and stable microbial
community with a commumnity metagenome that contains a large
number of AM ¢enes, and a matching number of resistance genes.
Given the relatively large number of AMs produced, and the large
number of resisance genes in each condituent spedes, such a
community is unlikely to be eadly invaded by extemal spedes.

B) No diversity (close to monoclonal community, B in Figure 2).
Only one of the species survives, the others die out. An analogous
phenomenon is well known in microbiology laboratories: ad hoc
mixtures of bacterial spedes generally do not remain unchanged
for long, usually one or few species survive [23,24]. In the
simulations, this scenario is observed if the given conditions do not
allow HGT to take place, meaning that the only surviving species
will have one of the darting genomes.

The evolution process seemed to follow the same general course
both for the diverse and for the monoclonal outcomes (Figure 3). It
consisted of two dearly digtinguishable phases: 1) An initial burst
phase, in which the number of surviving species drops to a lower
leve, and 2) a subsequent growth phase in which the number of
acents inareases but the number of species remains approximately
constant.

Factors goveming community evolution

In order to find out the conditions that favor the formation of
diverse and strong commumities that produce a large number of
antimiaobials we camried out a large number of simulation
experiments by sysematically varying parameters such as the rate
of horizontal gene trandfer; the tolerance threshold (innate, non-
specific tolerance) and the srength of the individual species
(number of AM/ resistance gene-pairs) (Figures 4«5). In Figure 4,
the blue areas indicate those conditions where communities are
unable to form (which corresponds to the monodonal population
in Figure 2). This outcome is seen éther when there is no HGT
(the rate is zero or very dow), or the species produce more
antimicrobials than they can tolerate on average (this results in a
diagonal divison). On the other hand, the results in Figure 4 also
show that communities can form under a large variety of
parameter combinations. Community strength (expressed as the
number of AM produdng and resistance genes) depends on the
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Figure 1. A contact-based model of horizontal transfer in bacteria. A) Agent A is in contact with those bacteria that are within its
neighborhood (denoted as a dashed drde of radius D). If bacteria B<E have more antimicrobial agent (AM) production genes than the tolerance
threshold, A will die. If not, Awill randomly take a number of resistance genes from the cells within this neighborhood. In each simulation step, this
calculation is repeated for all agent models within the community and then the agents move randomly (see methods) B). After a number of
simulation steps, the agents take up all resistance genes present in the community (green lines), the AM production genes (red lines) and the rest of

the genome (grey) remains unchanged.
doi:10.1371/joumal pone.0095511.g001

rate of HGT, ie strong communities that produce many AMs
form if HGT is intensive during the maturation process. This can
be seen in the left panel of Figure 4 as an increase of the red area
towards higher HGT values The effect of spedes srength is
summarized in Figure 5. It is apparent that strong spedes form less
diverse communities, even though the community will forma large
number of AMs Conversdy, weak species that produce a small
number of AMs can form communities more easly, but the
resulting community will be weak in terms of AMs produced. We
note that the genes representing the metabolic capabilities of the
individual species are not explidtly represented in this modd, i.e.
species diversity is a dired measure of a community's metabolic
repertoire. As a result, the optimum lies at intermediate strength
values ie. metabolically diverse communities that contain a
rdatively large number of AMs can be formed by species of
intermediate srength. In smple terms, superbugs are not team
players in this modd.

We aloo camied out the smulations with various other
parameter settings and found that diversity does not emerge in
conditions that allow exceedingly high levels of agent/ agent

Table 1. Glossary of terms.

contact. Such conditions induded high population densties or
high rate of agent movements (data not shown).

Competition experiments

The above tendendes can be validated by population compe-
tition experiments. As an example, Figure 6 shows the competition
of two populations that differ only in their natural tolerance
property. It can be seen that the red population that can tolerate
more AMs grows faster and transmits more species to the final
community than the blue population that is nonspecifically less
resigant. It is worth noting that once a population of blue and red
agents formed, it remained constant for the rest of the smulation.
In other words once the two spedes tolerate the AMs of each
other, the community does not necessarily change, at least
according to the pressnt HGT model.

Territorial defense: protection against invading bacteria
Invason was modeled with nawe or mature communities as

described in the Methods. To a community of 50 computational

agents we added 25 “invader'' agents of a single spedes in which

Glossary of terms

use this term for the substances naturdly produced by bacteria.

Antimicrobial agents or antimicrobials. A general term for the drugs, chemicas, or other substances that either kill or dow the growth of micobial cells. Here, we

Community strength. We use this term to denote the number of antimicrobials (or resistance genes) produced by a bacterid community.
Diversity: Species diversity is the effective number of different spedes tha are represented in a collection of individuals (a dataset).

Fitness: The extent to which an organism is able to produce offspring in a particular environment. Here, we use the growth rate of a species as a measure of fitness.

Horizontal Gene transfer (HGT) The term refers to the transfer of genes between organisms in @ manner other than traditiona reproduction. Also termed lateral
gene transfer (LGT).

Invasion, invasivity, invadability: Invasion is the expansion of a spedies into an area not previoudy occupied by it. Here, we use this term for a spedies taking over a
bacterial community. Such a spedes is termed invasive, and the community is temmed invadable.

Multidrug resistance: A term used for bacteria resistant to antibacterial agents having different mechanisms of action.
Natural tolerance: We use this term to denote the inherent ability of bacteria to grow in the presence of a certain number of antimicrobials in their environment.
Specific resistance: The ability of bacteria to grow in the presence of some chemical agents that have a given mechanism of action.

doi:10.1371/journal. pone.0095511.t001
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Figure 2. Composition of the model communities. If horizontal gene transfer is possible, the starting community of computational agents (left)
can ewvolve to a diverse community (A) in which substantial parts of the starting spedies are preserved. If horizontal gene transfer is not effective, a
non-diverse, “‘monodonal” community will form, with essentially one spedies (B). The numbers in the diagram represent the average, the error bars

the standard deviation, respectively, calculated from 100 simulations.
doi:10.1371/jounal pone.0095511.g002

the species srength, ie. the number of AM producing and
resigance genes, varied from experiment to experiment (Table 2).
We found that a nawe community could be easly taken over by
the invader population, but the invaders were virtually diminated
by a mature community. Only highly resistant “superbugs' (rows
4«7 in Table 2) could grow in a mature community. The results
show that a mature community is likely to be more resisant to
extenal attack than a nasve community in which the condtituent
species are not acdimatized to the AMs of each other.

Microbial therapy: Purging a pathogen with a healthy
microbial community

We also considered an oppodng scenario whereby a highly
resigant reddent population of a sngle species might be present in
a particular environmental niche and whether a multi-species
‘invading consortium could overcome it. This is a hiologically
plaushle soenario in that clearing antibiotic resisant pathogens
from hod organisms is a recurrent and serious problem in both
medicine and agriculture. To test this we invedigated a multi-
resigant pathogen capable of forming spores « analogous to the
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Figure 3. Community evolution in time, measured in simulation steps (arbitrary units). A) number of species and B) total number of
computational agents as a function of time. Blue (outcome A): Diverse community; red (outcome B): monodonal community. The error bars represent

standard deviation of the mean in 100 experiments.
doi:10.1371/joumnal pone.0095511.g003
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Figure 4. Strength and diversity of the community depends on the rate of horizontal gene transfer and on the properties of the
individual species (number of antimicrobials produced and the natural tolerance to antimicrobials). Note that HGT promotes
community strength (top planes vs. bottom planes). Species carrying few AM genes can form a diverse, but weaker community (black ammows).

doi:10.1371/joumal pone.0095511.g004

medically important Aetidumdffidle Broad-spectrum antibiotics
are often used in health care settings following surgery or infection
and can eadly wipe out the resdent microbiota of the
cgadrointedinal tract and/ or other physiological regions. This
may (or may not) alo include the vegetative cells of C. diffidle if
present. However the spores of such spedes will survive. Upon
cessation of the antibiotic treatment, the microbiota starts to grow
again; however this time with C. diffidleat proportionally different
levels (partly because of the spores and partly because it may be
less impacted by the antibiotic than the other miaobes). Our
model predicts that once a community forms, its composition will
not change by itsdf. Accordingly, a distorted community will not

-t
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o

60}

40

20

Community strength (%)

0 5 10 15 20
Species strength (no of AMs)

Figure 5. Community strength and community diversity (Y-
axis) are adversely affected by the strength of the individual
species (X-axis). Note that this figure isa collapsed version of Figure 4.
doi:10.137Y/joumal pone.0095511.g005
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necessarily revert to its original "healthy' state upon cessation of
antibiotic treatment £ an effect that has been widely documented
via experimental and clinical invedigations [25]. Treating a
dyshiotic microbiota with healthy micobiota seems a promising
avenue and maybe relevant in a wide variety of treatment targets
other than recurrent C.diffidle infections [ 26529].

In order to smulate this stuation, we construded a <eries of
resident pathogens that contained a varying number of AM
produdtion and resisance genes, and treated it with a mature

Population size

1000

0 500
Time [simulation steps]

Figure 6. Competition of communities differing in their
nonspecific resistance to antimicrobial components. The natural
tolerance (nonspedfic resistance) threshold was 10 for the blue and 15
for the red community, respectively. The numbers represent an average
of 25 simulations; the eror bars represent standard deviation of the
mean. The starting communities consisted of 200 cell agents from each
of the populations.

doi:10.1371/joumal pone.0095511.g006
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Table 2. Territorial defense: wilnerability of nasve and mature communities to an invading species producing varying number of

Community 1 (invader)?

Community 2: naive (resident)!

Community 2: mature (resident)®?

All numbers indicate the average of 100 experiments.
doi:10.137V/journal pone.0095511.t002

community of cell agents, that on the average contained less genes
than the pathogen, but where the community produced a large
number of AMs. The results in Table 3 show that the pathogen
could in fad be purged under certain conditions, unless it
contained an unusually high number of resstance genes rows 5-6
in Table 3).

Discussion

We have presented a contadt-based computational modd of
HGT in which random moving computational agents can acquire
resigance genes from their neighbors. The simulations suggest that
HGT can in fact fadlitate the formation of resisant commumities
that protect themselves by means of antimiaobial components.
Such mature communities are apparently difficult to invade by
randomly arriving pathogens (T'able 2) £ the oolledtive territorial
defense can protect both the community and subsequently any
host organiam. In addition, an implant of microbiota may be
capable of effectively purging a pathogen from an organian or
environment niche (Table 3). Taken together, our model predicts
that a mature microbial community has properties analogous to
multi-target drugs or cocktail therapies against which it is difficult
to raise effective resstance [30]. In other words we believe that the
presence of a large number of antimicrobial agents may be crucial
for the olledive defense and dability of natural microbial
communities by keeping invaders away. This property may be

# cells # species # AMs  # resistances % of survivors®: % of survivors®:

1 25 1 10 10 25 100

2 25 1 20 20 0 100

3 25 1 50 50 0 100

4 25 1 75 75 0 90

5 25 1 100 100 0 53

6 25 1 125 125 0 17

7 25 1 150 150 0 3

!Naive community: 50 cells, on average corresponding to 50 spedies, harboring a total of 181 AM production genes, and the same number of resistance genes.
2Mature community: 50 cells, corresponding to 15 spedes harboring a total of 109 AM genes and 180 resistance genes on the average.

useful in designing bacterial communities for therapeutic or
probiotic purposes. Another implicit suggestion of the modd is
that HGT helps a community preserve a varied metabolic
repertoire and makes it compatible in terms of exoproduds as
well as capable to maintain a varied metagenome.

In terms of limitations of this modding approach, superbugs (.e.
computational model agents equipped with a large number of AM
production and/ or resistance genes) can always invade a mature
community. However we need to point out that the model does
not indicate how resistant a superbug needs to be to actually
achieve this That is to say, the model works with symbolic
parameters only and so this result should be interpreted only as a
general indication of superbugs being dangerous (which is a
realistic prediction), and not as saying that such superbugs do or
can exist.

Another limitation of the model is that it does not contain a
metabolic component; it only deals with the compatibility of AM
production and resistance within a community, and not with
resource competition. In the context of community evolution our
model points to the plausble fadt that members of a dable
bacterial consortium must become compatible in terms of
secondary metabolites and predicts that HGT may be one of
several mechanisms that mediate this process. On the other hand,
compatihility does not mean gability. Stability of the community
will be determined by resource competition between the compat-
ible spedes. In other words we bdieve that a sructure of a

Table 3. Microbial therapy: Purging a pathogen with a transplant of a mature microbial community.

Community 1 (transplant)?

Community 2: single pathogen species (resident)!?

# cells # spedes # AMs # resistances # cells # AMs # resistances % survivors
1 25 10 81 180 25 20 20 0
2 25 10 8l 180 25 20 50 0
3 25 10 81 180 25 20 75 0
4 25 10 81 180 25 20 100 0
5 25 10 81 180 25 20 125 2
6 25 10 81 180 25 20 150 27

Mature community.
2All numbers indicate the average of 100 experiments.
doi:10.1371/journal. pone.0095511.t003
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community will depend both on interference competition and on
resource competition.

In summary, we argue, based on computer simulations, that the
resigance of a commumnity against invaders, and the capability of a
community to purge a pathogen from an environmental niche, can
be explained by bacteria exchanging resistance genes and thereby
maturing into a community that has a variety of metabolic and
antimiaobial producing competences. Based on these findings we
sugeest that HGT may be a viable target to study experimentally
with repedt to the dahility of multi-species miaobial communities
and their resistance characteristics. Such investigations are likely to
be highly rdevant in terms of the devdopment of treatment
approaches for intractable infections that are curently (or are
likely to be in the near fuhure) resistant to multiple anti-microbial
therapies.

Methods

The model condds of agents (representing cells) that are
dimensionless points randomly moving on a 2D surface. The
simulation proceeds in disrete time-steps, and at every time point
the agents update their genomes as described below in detail. The
model works with symbolic parameters, summarized in Table 4a-
3c.

Space and movement

The agents move within a unit cirde on a 2D surface (§milar to
a Petri dish). At the beginning of the snulation, agents are
randomly placed within theunth jrcle, with the location of agent A
at time t denoted by Al~ «x,y4 *Al*v 1" At each time step, the
agents move a gep of length din a random direction athat can be
formally denoted as Al~ AY !z dycossassinsass (equation 1).

Table 4. Model parameters for initialization

Horizontal Gene Transfer in Microbiomes

When an agent moves outsidg the unit circle, it is relocated back
within the cirde by Al~ Al=tAts

Cell-agents

200 antimicrobial factor producing genes (AMP) and 200
antimiaobial ressance genes (AMR) are denoted by numbers
1,4 ,200. Agents have a random genome, and a randomly chosen
subset of AMP and AMR, respectively. Formally, a predetermined
number of antimicrobial fador produdng genes selected from
Aamp( £1,2,...,200g are assigned to an agent A, and the
matching resstance genes selected from Aamr( 1,2, ...,2009
are alo assigned to it.

It is assumed that an antimicrobial (AM) acts within a given
radius Dy around agent A that produces it. We call the drcle of
radius D the “contact neighbodnod"gof agent Aang denote the set
of agents within this circle by By~ "B :*Bi{ Al*v D . Agents
in B," produce a number of AMs, against which agent A may or
may not be specifically resstant. NAM is the number of AMs
against which agent A does not have a specific redstance gene.
Agent A dies (ie. it is deleted from the smulation) if NAM is
greater than the survival threshold ST. Formally, an agent A diesif

382 [ g 3
by Barp_ VAarrdw ST: gequation 24
4> > 4
< BIBY ’ 4

ST is a measure of aspecific resigance since ST is the number of
antimiaobial fadors that an agent can tolerate

Agents are capable of acquiring new resistance genes from other
agents within the contact neighborhood via HGT. Thisis formally

Model parameters for horizonta gene transfer (HGT) and movement

Parameters Description Default value
Number of bacteria Number of agents at the beginning randomly generated 50
Dish radius Radius of the circle in which the cell agents can move 2
Number of AM Number of antimicrobid factors 200
Number of resistances Number of resistance genes 200
No of genes Number of randomly chosen AM-resistance gene pairs in a cell-agent a& 10
the beginning of the simulation
Termination The condition when the simulation stops 95 % of the occuring resistance genes were

spread

Parameters Description Default value

ST Sunvival threshold: The number of non-spedfic resistance that an agent can endure 4

D The radius within which a specific resistance gene takes effect 0.2

HGT frequency The frequency of HGT per iteration for one agent 1

d The length of a step to a random direction 0.05

Model parameters for population related variables

Parameters Description Default value

Nrrax Maximum size of the population 50

m Division rate, the percentage of the population that divides 01

Division frequency After every 10 iterations
Death rate The percentage of the population that dies 01

Death frequency After every 40 iterations

doi:10.1371/journal. pone.0095511.t004
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The genes acquired via HGT are randomly pided from the
¢enes present in the neighboring odls, and if an agent randomly
picksa gene it already has, no trangfer will occur. This ensuresthat
the number of HGT dows down over time.

Population growth and decay

At given time intervals a certain percentage of the agents divide
i.e. produces an offspring that has the same genome as the parent.
The agent population growth follows a sgmoid aurve described by
the Richards model [31]. The portion of the agents to be
duplicated is calculated by

A T

dN N

—~ nfN)N, wheenfN)~ m 1{ —— , equation4s
dt Nrex

where m is the maximum specific growth rate, N is the size of the
population at timet, and N, is the maximum population that can
be sudained (set to 400 in all of our experiments). At given
intervals a certain percentage of the population dies (.e. some
randomly selected agents are deleted). The complete life cycle of
an agent can be seen in Fgure 7.

Community evolution experiments

At the beginning of the experiment, a starting population of 400
agents was created by randomly choosing a spedfied st of AM
produdion and resistance genes. Theses agents, which we term as
rage were randomly placed on the dreular surface, according to
an even disribution. During the simulation, the agents performed
the functions desaibed in Figure 7 and equations 1-3, at every
given time gtep. As a result the specific resistance genes spread in
the population, and the population grew according to the sgmoid
curve described by equation 4. The smulations were terminated
when the change in the population content or the genome was not
significant compared to the previousiterations More precisly, the
smﬂanomwemtamnatﬂivﬁmaﬂn'magnshaddled
according to equation 2 in the previous 50 iterations or when 95
per cent of the resstance genes had been spread via HGT. We
term the resulting agent populations as nahre

Each agent in the darting population was given a cell line
identifier, which was also passed on to its progeny. The darting
and finishing agent populations were characterized by the number
of cell lines and number of AMP and AMR genes present in the
population. Simulations were run in 10 repetitions, and results
were presented as progress curves, representing the average of a
given variable with error bars representing the standard deviation
of the mean.
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Population competition experiments

For the competition experiments, we used mature populations
produced by the evolution experiments described in the previous
section. Asa rule, two populations of equal Size were placed on the
circular surface and the smulations were allowed to proceed as
described above. The simulations proceeded until the populations
either dabilized or one of them died out.
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