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Abstract: Bottom-up proteomics (mass spectrometry analysis of peptides obtained by proteolysis and separated by liquid
chromatography, (LC-MS/MS)) is one of the most frequently used techniques for identifying and characterizing proteins
in biological samples. A key element of the analysis is database searching when the mass spectra of the peptides are
compared with a database of theoretically computed (or experimental) peptide spectra. Here we discuss the main
computational approaches to spectrum database searching and the statistical analysis of the results.
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1. INTRODUCTION

Liquid chromatography coupled to tandem mass
spectrometry (LC-MS/MS) is one of the most frequent
techniques used for identifying proteins in biological
samples. This is a complex technology which gave rise to
highly specialized computational approaches. The goal of
this article is to provide an introduction to an important sub-
problem, database search-based protein identification used in
LC-MS/MS, for students and bioinformaticians who are new
to this field. We note that there are various methods for
fragmenting molecules for tandem mass spectrometry but for
simplicity we limit this discussion to collision-induced
dissociation (CID) methods that are perhaps the most widely
used for analyzing complex biological samples.

In a typical proteomics experiment, a sample containing a
mixture of proteins is first digested with a protease, such as
trypsin, and the resulting mixture of peptides is subjected to
automated analysis by Liquid Chromatography coupled to
tandem mass spectrometry (LC-MS/MS.) The LC functions
to remove contaminants, concentrate the analytes, and give
the mass spectrometer more time to analyze the sample, as
the constituent peptides will elute at different times. The
mass spectrometer initiates an analysis cycle by measuring
the mass to charge ratio of the precursors (originating from
intact peptides) which are eluting from the LC. It is
important to note that a mass spectrometer can only measure
charged species and the mass and the charge determine the
behavior of a particular ion in the mass spectrometer. Thus
the unit of measurement for a mass spectrometer is the mass
to charge ratio, which is abbreviated as m/z. The mass
spectrometer then attempts to isolate a single precursor from
all other co-cluting species, and then subjects this precursor
to fragmentation within the mass spectrometer. The mass to
charge ratio (m/z) of the resulting fragment ions is then
measured. The output is a distribution of the observed m/z
values, called a fragment ion mass spectrum, a product ion
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mass spectrum, or a tandem mass spectrum. Whatever it is
called, the fragment ion spectra are typically associated with
the precursor m/z, the charge state (z), and sometimes the
chromatographic elution time. This data is then interpreted
by one of three strategies:

a. De novo sequencing, either manually or computationally,
attempts to infer the complete amino acid sequence of the
fragmented peptide without the use of a sequence
database. This approach is not discussed in this review,
see chapter 11 of [1] for an excellent introduction.

b. In sequence-tagging, runs of amino acids are inferred
from the spacing of the fragmentation peaks and these
peptide-words are then used to identify proteins in a
sequence database [2].

c. Finally, the most common strategy is database-searching
where the mass spectrum is used without interpretation to
query a database of theoretical spectra [3].

A variant of this final strategy uses libraries of previously
identified spectra rather than a database of theoretically
derived spectra. The use of spectral libraries has certain
advantages over the use of theoretical spectra, however, both
strategies rely on the correct peptide sequence residing in the
database. LC-MS/MS produces large amounts of data that
require specific preprocessing solutions [for an overview see
accompanying paper]. Namely it is not uncommon to collect
thousands of spectra from a single sample, but a large
percentage (sometimes up to 80%) of the detected peaks can
be noise [4].

In a broad sense, database searching using MS/MS
spectra is largely an exercise in pattern recognition and
entails finding those entries in a database that are the most
similar to a query spectrum, typically in terms of some
similarity criterion like correlation coefficients [3]. This is a
fundamental task in bioinformatics (e.g. genome annotation,
3D structure analysis) but also in searching music or image
databases. The terminology and the approaches vary
depending on the field, nevertheless the algorithms share
several commonalities:
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a. The representation of the data and the choice of the
similarity measure are critical, there are no universal
solutions even within the same application area.

b. The data formats used for storage and for database
searching are often different, and the choice between on-
the-fly reformatting and database preformatting may
depend on many factors (time and memory space
requirements, updating frequency etc.). In most cases,
databases are just series of records, but pre-grouping
and/or indexing of the data is used in many areas in order
to decrease the time-requirement of the searches [5].

c. There are multiple search schemes where one first uses
inexpensive screening methods in order to identify a
smaller number of potential positives which will then be
further analyzed by more time-consuming, accurate
scoring methods [6].

d. The results of the scoring procedure are often
transformed into probabilistic quantities, such as
statistical significance, using estimates of randomly
occurring scores [7].

e. Ranking methodologies, top-lists and related statistical
concepts such as ROC analysis [8] are frequently used in
the evaluation.

In most bioinformatics applications, the goal of database
searching is classification or annotation, i.e. we usually want
to assign an object (sequence, structure, article, etc.) to a
known class of objects. A class is always represented by
some kind of a model, and we compare a query either with a
database of annotated objects, or with a database of class
descriptions. In a slightly different approach, we can
compare our search results with an abstract description of an
uncharacterized class, and decide if the query is the seed of a
new class [9].

The goal of this review is to place proteomics database
searching into this general framework. The proteomics
workflow has additional challenges that are not frequently
seen in other bioinformatics workflows. For example, one of
the distinctive properties of the proteomics approach is the
use of enzyme digestion that facilitates collection of
experimental data. Unfortunately, this step multiplies the
number of necessary database searches and simultaneously
breaks the relationship between the measured peptides and
the original protein. So the proteins present need to be
deduced from their peptides identified by database search, in
a process termed “protein inference” or “peptide grouping”.
Furthermore, the proteomics data pipeline is beset with
problems, such as the errors associated with the m/z
measurements, as well as, missing and extraneous data point.
These create particular challenges that must be overcome.

Although the peptide fragmentation pattern can be
instrument dependent [10], most instruments are set up so
that the peptides are fragmented in so that one particular
molecule typically breaks at only one position somewhere
along the peptide backbone. Of the possible ion types (Fig. 1
inset) the frequently seen b- and y- ions are most commonly
used for peptide identification (Fig. 1). In addition, there are
characteristic derivative ions (loss of ammonia, loss of water
oxidation, etc.), which are also used by some of the search
engines (for the nomenclature of the ions see [11]). The
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fragmentation of peptides has a few unusual consequences:
a) reconstruction of peptide sequence from MS spectra can
be relatively straightforward, but is computationally
expensive; b) Theoretical MS/MS spectra can be constructed
from sequence using a few straightforward rules. This
property allows one to produce theoretical MS/MS spectra
collections for spectral searching methods. ¢) Each protein is
characterized by a highly informative set of MS/MS spectra,
which makes it possible to identify proteins from just a few
MS/MS spectra, even in complex mixtures which contain
thousands of proteins, such as clinical samples or biofluids.
b) and c) are the properties that make MS/MS analysis the
method of choice for identifying proteins in many current
biological and medical applications. The in silico production
of theoretical spectra is relatively straightforward as long as
no attempt is made at predicting the intensity of the fragment
ions, as the understanding of the sequence dependent effects
of fragment ion intensity are not completely clear [12, 13].

2. DATA AND DATA FORMATS (EXPERIMENTAL
AND THEORETICAL SPECTRA)

A mass spectrum is a plot of signal intensity vs. mass in
which peaks correspond to fragment ions (Fig. 1).
Importantly, not all of the theoretically possible peptides are
actually observed. For a review of fragmentation rules, ion
nomenclature, type of ions formed see [10, 14]. The peak
intensity (y axis) is a measure of the abundance of a
particular fragment. The x axis is the mass-to-charge ratio
(m/z) of the fragment, sometimes simply (but always
incorrectly) referred to as the mass. As previously noted, in a
typical MS/MS experiment the fragmentation ions falling
into an instrument and precursor mass dependent range, are
collected and their intensities and mass values are recorded
and are associated with the precursor mass (the mass of the
proteolytic peptide the fragments derive from), the charge
state of the precursor, the intensity of the precursor and the
chromatographic elution time. Fig. (1) shows an
experimental MS/MS spectrum in a graphic form. One LC-
MS/MS experiment generates many thousand MS/MS
spectra that are recorded as a series of peak-lists.

Unfortunately, there is not a uniform format for these
peak-lists and formats are usually generated by instrument
manufacturers and Dbioinformatic groups [15, 16].
Standardization of these formats is still underway. There are
currently a number of commonly used formats like .mgf
(mascot generic format), .dfta (Sequest), .pkl(Micromass),
.mzxml, .mzml, .mzdata, etc. (for an in depth description of
these formats see http://www.matrixscience.com/help/data
file_help.html). Recently an open file format .mzXML has
been designed in order to facilitate the data exchange
between programs in the computational pipeline [17].
Although the lack of a standardized file format is
problematic, most search engines accept a variety of formats
and a number of file conversion tools have been developed
[18, 19].

Theoretical MS spectra are those calculated from peptide
sequences. There are a variety of programs that can take a
protein sequence, digest it in silico into fragments
corresponding to the specificity of a user-selected proteolytic
enzyme and output ions masses according to the theoretic
fragmentation rules as indicated in Fig. (1) (Table 1). Such
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Fig. (1). An experimental spectrum of the peptidle HQGVMVGMGQK (precursor m/z 1172.4, CID detection). In the mass spectrometer, a
peptide breaks into two parts at various points of the peptide backbone, which gives rise to a series of ions (a,b,¢,x,),Z, see inset). The
annotated peaks correspond to the b-y fragment ions which are the most frequently used for peptide identification. Some b-y ions e.g. by, V¢
are not observed in this example. Other peaks can be considered noise. Note that the theoretically possible a,c,x,z ions are not detected in the
most commonly used CID spectra, and b; ions form only under special conditions.

theoretical spectra contain a perfect ladder of b- and y- ions
and sometimes their derivatives. Inconveniently, any of these
theoretical ion may not be observed in the associated
experimental spectra, due to limitations of the
instrumentation, the physiochemical properties of the peptide
or other factors. To help this problem, Protein Prospector
generates ionization and instrument specific fragmentation
tables (http://prospector.ucsf.edu/). Efforts to deal with the
peptide sequence dependency of fragmentation have been
more difficult and have only met with limited success [12,
13, 20]. There are currently no universally accepted or
widely used methods to calculate theoretical peak intensities.
Therefore, the intensities of theoretical spectra are usually
taken as unity (binary vector description).

3. DATABASES

In other spectroscopic techniques, such as MS of organic
molecules, data interpretation is based on large collections of
experimental spectra. In MS/MS proteomics there are
ongoing efforts to collect experimental spectra into spectral
libraries [21-24]. However the task is formidable: the
roughly 60 thousand proteins human proteins listed in the IPI
database (v. 3.71) give rise to over 700 thousand unique
tryptic peptides, and the experimenter may use different
enzymes, combinations of enzymes, or is looking for post
translational modifications. So the current method of choice
is to use a protein sequence database to produce a collection
of peptides in silico, and calculate their theoretical spectra. In
principle, virtually any protein database can be used to
calculate theoretical spectra. However, the non-redundant
and curated databases (Table 2) are more suited for this
approach as they can be searched more quickly. The storage
format of the databases is a sequence collection, and for the
production of the search format (the theoretical spectra), one
can employ either preset variables or one can employ
variable, experiment-dependent rules, such as user-defined
enzyme cleavages, posttranslational modifications etc. In the
case of preset variables, the theoretical spectra can be

precalculated and stored in an indexed format. However, this
approach limits the experimenter to preprogrammed datasets
or requires that all possible variables be pre-calculated.
Therefore, many theoretical databases perform these
operations on-the-fly -of course indexing can also be done
with on-the-fly production, which of course increases the
time requirement.

Spectral libraries are collections of experimental spectra
that have already been confidently assigned to peptide
sequences [22]. In principle, these collections can be used
instead of the theoretical peptide and protein sequence
databases [21-24]. On the other hand we note that the most
frequent problem for the database searches if a peptide is not
in the database. This is especially true for current spectral
libraries, even though frequently detected peptides can be
quite readily identified from them. Additionally, most of
current spectral libraries are dominated by ion trap data, so
may not be universally applicable. In most cases the same
algorithms can be used for searching both spectral libraries
and sequence databases.

Theoretical spectra can also be created from decoy
sequences. These decoy datasets are designed for statistical
purposes, i.e. to model randomly occurring similarities
between spectra [27-30]. A decoy database should fulfill the
following criteria: i) the amino acid distribution should be
the same as the original (target) database ii) the distribution
of protein and peptide sizes should also be the same iii) the
production of the decoy database should be reproducible by
other labs. They can be produced from random shuffling [31]
or Markov-chain generated amino acid sequences [32], or
more typically, by simply reversing the sequence of proteins
in the database [27] and then processing the database
identically to the target database, which is often called a
“reverse” dataset. The decoy dataset can either be appended
to the target dataset or the two datasets can be searched
separately and there are various advantages to each approach
[33].
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Table 1. Programs Available for Calculating Theoretical MS Spectra from Protein Sequence
Name Web address
MS-product http://prospector.ucst.edu/prospector/cgi-bin/msform.cgi?form=msproduct

Peptide Fragmentation Modeller

http://omics.pnl.gov/software/PeptideFragmentationModeller.php

Theospec [25]

http://sourceforge.net/projects/protms/files/theospec/

InSilicoSpectro/FRagmentator [26]

http://insilicospectro.vital-it.ch/

Last accesses of web pages were on Feb 28" of 2011.

Table 2. List of Protein Databases Used in MS/MS Proteomics

Protein Sequence Databases

Web Address

Entrez Protein DB*

http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein

Reference Sequence (RefSeq)”

http://www.ncbi.nlm.nih.gov/RefSeq/

UniProt, consisting of Swiss-Prot and TFTEMBL"

http://www.uniprot.org/

International Protein Index (IPI)®

http://www.ebi.ac.uk/IP1/IPIhelp.html

Annotated Spectrum Libraries

PeptideAtlas’ http://www.peptideatlas.org/
SBEAMS! http://www.sbeams.org/
PRIDE® http://www.ebi.ac.uk/pride/

Last accesses of web pages were on Feb 28" of 2011. * NCBI National Center of Bioinformatics), "SIB(Swiss Institute of Bioinformatics) and EBI(European Bioinformatics

Institute), “EBI and “ISB(Institute for System Biology)

4. SPECTRUM COMPARISON

Mass spectra are typically compared as vectors, and in
order to be comparable, the spectra (peak-lists given at high
precision) have to be mapped to the same mass (m/z)
coordinates. This is largely due to mass errors in the
experimental spectra. This process can be pictured as binning
the mass range; for instance, binning mass range of 0-4000
Daltons into 0.5 Dalton bins gives 8000 dimensional vectors.
The bin width depends on the precision of the measurement,
the less the mass resolution, the larger the bin must be. The
intensity assigned to a bin is an aggregate value (maximum,
average, sum) of the peak intensities that fall in the bin. Such
vectors can then be numerically compared using a one of the
many scoring functions available for calculating the
similarity of vectors. The one which is most widely used to
compare MS spectra is the so-called inner product (or often
referred as dot product).

I(g.t) =3.qt, , (1)

where the experimental (query) and database spectra are
denoted by ¢ and f, respectively and a; denotes the i™
component of the vector a. Since the query is an
experimental spectrum with peak intensities, and the target is
a binary vector from the database, the inner product in (eqn.
1) is equal to the sum of matching intensities. This is a good
measure of spectrum similarity in itself, and it is used in the
so-called Xcorr similarity measure used by the SEQUEST
search engine [34]:

Xcorr(q,t) = I(q,t)—Fll’i 1(g,1[i]) 2)

The second term in the formula (eqn. 2) is called cross-
correlation and it represents the average back-ground noise,
calculated by shifting query and the theoretical peptide
spectrum with respect to each other, from -75 to +75 steps
around the original position. Neither /, nor Xcorr are
bounded, higher values indicate higher similarities.

The similarity of two spectra can also be measured by
simply counting the matched non-zero peaks in the vectors,
i.e. the peaks that are in the same position in both the
experimental and the theoretical spectrum. Formally,

M(q,t)=73,sign(qt,), (3)

where the function sign(.) is the signum function. This is the
simplest similarity measure, it is discrete and its value falls
between 0 and the total number of peaks in the sparser
spectrum.

One way to convert the number of matching peaks into a
bounded scoring function is to convert it into a probability
value [35]. Geer and associates used the Poisson distribution
to define a probability that the n matching peaks occur at
random [36]. The resulting OMSSA score is defined as

[T

P(g,t)= il 4)

In the formula u=2Thv/m, n=M(q,t), where ‘T is
the resolution of the instrument, # and v are the number of
the peaks in the experimental and the theoretical spectrum,
respectively, and m denotes the neutral mass of the
precursor. The division by m is a frequently used strategy to
normalize the score to the mass of the peptide, as larger
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peptides will typically produce more fragment ions than
smaller peptides. The value of P is between 0 and 1, lower
values indicate better similarity.

The b- and y-ions can be distinguished in the theoretical
spectra, we denote them by ¢, and ¢, respectively and the
inner products for 5 and y ions can be calculated separately,
which will increase the specificity of the comparison. Fenyo
and coworkers developed a hyperscore [35] on this basis:

hs(q,t) =[1(q,1,)+1(q,1,)1IM (q,1,)'M (q.2,)'], (%)

where the two [.] terms are the intensity and the match count
term, respectively. The peak intensities are usually scaled
between 0 and 100. The match count term employs a
factorial function, so this term will dominate the hyperscore.
The application of binning to produce discrete vectors has
limitations due to discretization error. Many search engines
have evolved ways to avoid the discretization errors invoked
by binning though the actual calculations follow the
principles outlined in this section.

S. SIMILARITY SEARCH AND
ASSIGNMENT

PEPTIDE

In principle, an experimental query spectrum should be
compared with all members of a database. In MS/MS
proteomics, the search space is prohibitively large. Most
search engines limit the spectral comparisons to
experimental and theoretical spectra that are derived from
precursors with similar masses. Indexed databases can then
be used to provide a significant speed up [5, 37]. While this
speeds up the search itself, storing an indexed database can
be problematic, as many of the experimental variations need
to be considered prior to database construction. Therefore,
many search engines produce the database on-the-fly, using
experimenter adjustable conditions and these on-the-fly
databases may or may not be indexed. A heuristic solution,
also used in other fields, is to carry out multiple searches,
using a fast screening search as the first step followed by a
more thorough search in the second step. The X!tandem
search engine [38, 39] takes advantage of this strategy even
farther. It first calculates the hyperscore (eqn. 4) on the
limited set, then retrieves all proteins that had at least one
top-scoring peptide in the first round, and carries out a more
exhaustive search on this smaller dataset, using the same
scoring algorithm, but extending the database with post
translational modifications (to be discussed later). Another
strategy is to use an inexpensive scoring function first, retain
a set number of top-scoring entries and re-score them with a
more computationally expensive algorithm in order to find
the top-seated theoretical peptides. SEQUEST [34]
calculates a so-called S, score in the first round, defined as:

1(q,0)M (g,¢)(1+ 0.0075R(q,1))
M(,1)

S, (q.0) = : ©)

where R(g,t) is the maximum number of consecutive b- or
y- ions from the theoretical spectrum that appear in the
spectrum ¢, and M (¢,t) is the number of the peaks in the
theo-retical peptide spectrum. SEQUEST selects the top 500
scoring peptides and rescores them by Xcorr (eqn. 2), which
is used as the final ranking function. Other approaches use
more sophisticated filtering methods [40, 41]. The top seated
peptide is assumed to be correctly identified and as long as
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the score of the top-seated peptide is above a preselected
threshold, it is called “hit”.

Finally, experimenters themselves usually optimize
search time by selecting the sequence database on an
empirical basis. One school limits the database to a single
target species, trying to get the best annotated and least
redundant dataset, refine it (e.g by adding isoforms, splice
variants, removing signal and propeptides, N-terminal Met
residues etc.) before using it for generating the theoretical
spectra. This approach is efficient, but problems arise if the
dataset is too small for calculating statistical significance
(discussed in the next section), especially if common
contaminants, such as keratin, are not accounted for. Another
empirical approach is to use a comprehensive (multispecies
or all species) dataset in the beginning, and limit the search
to species that produce recurrent hits. This approach is more
comprehensive and more time-consuming, especially if the
sample contains evolutionarily conserved peptides. In other
words, the search space could be limited based on the
available experimental information considering the origin of
the sample, the mass accuracy featured by the instrument, the
ion types that particular activation will produce etc.

Calculation of Significance of the Peptide Assignment

The notion of significance used in MS/MS proteomics
follows the same principles as used in various other fields,
for instance in BLAST statistics [42]. The significance of a
peptide hit with a similarity score 4 is the probability of
observing a random score x that is higher or equal than the
hit A, that is P(h < x). This probability is the so-called p-
value, its definition follows the Fisherian principles of
statistical hypothesis testing, and requires knowledge of the
distribution of chance or random similarity scores. In this
context the random score means the similarity score between
an experimental and a decoy database spectrum.

The significance of peptide hits is estimated by various
methods:

a. Explicit calculation of the random probabilities based on
theoretical considerations; the probability distribution of
the random scores depends on the type of the scoring
function. In the case of the matching peak count, this
distribution can be modeled with hypergeometric [43] or
Poisson distribution [36], for matched intensities (eqn.
(1)) it is modeled with a normal distribution [44].

b. Fitting a distribution to a sample of random scores. These
can be either extracted from data obtained by comparison
of the query spectrum with the theoretical database (and
leaving out the highest similarity scores as non-random)
or determined by comparing the query spectrum to a
separate decoy dataset [35]. The drawback of the latter is
that it doubles the database search time. The random
hyperscores (eqn. 4) are modeled with fitting an extreme
value distribution [35].

c. PeptideProphet [45] calculates a probability that the hit is
correct via building distributions on scores and peptide
properties (the number of termini compatible with
enzymatic cleavage (for unconstrained searches), the
mass difference with respect to the precursor ion, the
presence of an N-glycosylation motif (for N-
glycosylation capture experiments), etc.) of correct and
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incorrect hits using an Expectation-Maximization (EM)
method.

d. When the distribution type of the random scores are not
known, the p-values can be approximated in non-
parametric way by simply calculating the percentage of
the scores on the decoy dataset, equal or higher score
than the actual hit itself [29].

e. DeltaCN of SEQUEST calculates the approximate
significance of a query hit [3] as the ratio of the best
score value to the second best score value obtained in the
database search. Note that this value is not a statistical
significance in the rigid mathematical sense, it relates to
likelihood ratio [46].

After calculating the significance of the query hits, one
can choose a threshold to keep the top significant hits and
calculate the False Discovery Rate (FDR) either on a
probabilistic basis or using the hits obtained on the decoy
dataset [29]. For instance, one can adjust the threshold for
truncating the top list of hits so as to have a given percent of
decoy hits above the threshold, typically 1% or 5%,
corresponding to FDR=0.01 or 0.05. The quantities used for
significance analysis In LC-MS/MS are not very different
from those used in other fields (Box 1.). What is different is
the frequent (and, perhaps, not always critical) use of decoy
databases. In reality, a) decoy databases can contain high
scoring peptides that are similar to real sequences and b) not
all the hits against a target library are true positives. Both of
these can bias the evaluation, nevertheless, decoy databases
remain useful tools for roughly pinpointing the range of
important similarities.

6. PROTEIN INFERENCE

Once we have a list of significant peptide hits, the next
task is to infer a list of proteins which are present in the
sample. This can be done by assigning a score to proteins via
some aggregation method applied to the peptide scores (or p-
values). This task is not trivial, different methods can result
different solutions. The main reasons are that i) some true
peptides may not generate significant p-values, ii) some
peptides (called degenerate peptides) may be present in more
than one protein, and iii) very large proteins in the theoretical
database may be selected, even though none of the individual
peptide hits would be considered statistically significant. A
practical approach, sometimes referred to as the parsimony
principle, is to select the simplest group of proteins that is
sufficient to explain all the observed peptides [47, 48].
However, it should be noted that this procedure can provide
more than one solution depending on the parsimony
principle applied. In the example shown in Fig. (2), the 5
peptides have been identified that are parts of 4 different
proteins. If the principle is to select the minimal set of
proteins that explain the results, then ¢ and d are sufficient
and a and b are discarded. However, if the parsimony
principle is altered to pick the minimal set of proteins that
also have the most peptide evidence, then proteins a and ¢
are selected, and proteins b and d are discarded.

In addition to using simple parsimony rules, the protein
inference problem can be solved by converting the peptide
scores (or significance measures) to protein based measures.
The X!tandem software calculates an E-value for proteins by
simply forming the product of the peptide E-values

Kertész-Farkas et al.
E(protein) =M [ T e(p)). )

where e(p;) denotes the E-value of a peptide p; , peptide p,
is part of the protein and # is the number of the peptides of
the protein of interest [35], where M is the number of the
significant query hits. This would bias the reporting to the
proteins with the best peptide matches, rather than towards
the protein with the most peptide matches.

Box 1. Statistics Terminology

probability distributign
of random score:

probability distribution
of correct scores

p-value of hit h
B

T h
score

A hit £ is labeled significant hit if it is greater than or equal to the
threshold T. Random score is a similarity score between a randomly
chosen experimental and theoretical decoy peptide spectra.

Hit A hit of a query q is the maximum of the similarity
scores calculated between the query and the theoretical
peptide  spectra of the database, formally
hit fy(q) = max, =, {s(¢,t)} , where D denotes the
database.

p-value The p-value of a query hit A is the probability of
observing a random score x greater or equal to the score
of the hit i.e P(h =< x). The smaller the p-value, the
more significant the observed hit. The p-value depends
on how the distribution of the random scores is

modelled.

E-value The E-value of a query is the expected number for
finding a database element with random score greater
than or equal to the query hit / on a database of n, i.e.
E(q) = nP(h < x). For instance, an E-value of 107
means that the score / is expected to occur by chance
only once in 100 independent similarity searches over
the database. If the E-value is 10, then ten random hits
with score greater or equal to / are expected within a
single similarity search.

FPR False Positive Rate, the probability of labelling a
random score significant (area B in the figure). A FPR
0f 0.01 means that 1% of the random scores are labelled
significant.

FDR False Discovery Rate, the ratio of random scores within
significant scores, formally FDR = 4 /(4 + B) (A, and
B are defined in inset). The FDR = 0.01 means the 1%
of the scores labelled significant are actually observed
by chance. FDR is often used to control the ratio of the
false positives. The threshold t can be set to keep the
FDR under a certain level, typical levels are 0.01 or
0.05, i.e experimenters set thresholds to allow 1% or 5%
of false positives. The lower the FDR the more true
(non-random) similarity hits are lost.

g-value The g-value of the query is the minimum FDR when its
hit is called significant. A g-value of 0.01 means that
trying all possible values for threshold T, the lowest
FDR is 0.01 when the hit is labelled significant. Note

that the g-value also depends on the database [49].
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Proteins
a b c d
Peptide 1 +
Peptide 2 + + + +
Peptide 3 + + + +
Peptide 4 + +
Peptide 5 + + +

Fig. (2). A protein/peptide composition map. A ‘+’ denotes that a
peptide is present in the protein.

Protein Prophet [47] computes the probability of a
protein being present in a sample with the following

statistical model:

P(prot)=1-

~ [1_ w/' p(+| D;, NS}') (8)

i\ p(=|Di,NS)+ p(+] D;,NS[")

s

where w' =P,/ Er'n_lP is the weight of peptide i being

assigned to the protein, NSl.n is the number of siblings of

peptide i in the proteins of interest, + and - denote the
‘correct’”  and  ‘incorrect” assignment resp. Finally

p(+1D;, NS7') = p(+[ D) p(NS;' | +) , where p(NS["[+) is
the probability of having a particular NS value of correct or
incorrect peptide assignment and p(+| D;) is the probability

of the correct assignment having information D, For
parameter learning, ProteinProphet uses an EM algorithm.
We note that all solutions presented here are mathematical,
but in the practice, any of the proteins that contain a
particular peptide can be present. For a review paper about
the protein inference problem see [50].

7. POST TRANSLATIONAL MODIFICATIONS AND
PARTIAL DIGESTION

Until now we considered an ideal case where all peptides
found in the sample perfectly match a theoretical peptide.
However this is not the case in practice, and posttranslational
modifications (PTMs) are one of the main reasons of
discrepancy. On average, human proteins are thought to
carry 3 PTMs on one of their amino acid side chains.
However less than 1% of the proteins in the
UniProtKB/Swiss-Prot are annotated with PTMs [51]. In
additional to  biologically relevant modifications,
modifications can also occur during sample preparation and
these also have to be accounted for during the database
search. The current list of these two kinds of peptide
modifications is over 500, they are listed in lookup tables
according to their specificity and the mass change they
induce (see www.unimod.org or http://www.ebi.ac.uk/
RESID/). PTMs that are stable during the fragmentation will
change both the precursor mass and some peaks within the
fragmentation spectrum: the b- ions that lie C-terminal to the
modified site and the y- ions N-terminal to it will be
increased by the mass of the PTM. The rest of the spectrum
may remain unchanged with respect to a spectrum from an
unmodified peptide. The overlap between modified and
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unmodified spectra from the same peptide is often sufficient
for clustering the modified and unmodified spectra together
but may not be sufficient for getting a significant score from
a database search engine. Therefore the search engine needs
to be capable of predicting the changes in precursor mass
and the resulting fragmentation spectrum.

The calculation of theoretical spectra for all possible
PTMs is not feasible because each PTM under consideration
leads to a combinatorial explosion of the spectra to be tested,
especially when more than one PTM per peptide is allowed.
In essence, the inclusion of PTMs results in the rapid
expansion of the search space.

For PTMs identifications two main approaches have been
developed. In the first approach (called restricted
modification searches) the experimenter has to provide the
kind of PTMs that are expected and then the program will
generate all the possible combinations of modified
theoretical spectra. In the second approach (called
unrestricted modification searches) the programs try to
identify PTMs without a priori assumptions on modifications
that might be present and this approach can use PTMs
annotated in databases or previously unseen ones [52, 53].
For a review paper on various strategies for finding PTMs
see [54].

Partial digestion refers to the fact that the digestive
enzyme used for sample preparation (e.g. trypsin) may not
cleave at all the expected sites. So in addition to the expected
peptides, the sample may contain peptides with one or more
uncleaved sites (missed cleavages). The number of missed
cleavages causes a steep increase to the number of peptides.
A protein that yields 10 peptides upon perfect cleavage,
yields 19 or 27 if one or two partially cleaved bonds are
allowed. Similarly, the enzyme may also cut in unexpected
places (unanticipated cleavages), which can also confound
search engines. A popular strategy is to require at least one
end of the peptide to be a “true” cleavage and the other end
is allowed to vary [36, 55].

In contrast to spectral matching, discussed above, the
sequence tagging approach is closely related to de novo
sequencing, inasmuch as runs of amino acids (“sequence
tags” or “amino acid words”) are directly inferred from the
spacing of the fragmentation peaks [2]. Importantly, a few
short runs of at least 2-3 amino acids (called amino acid
words) are often enough to identify the peptide sequence, via
querying a sequence database for similar sequences [56]. The
sequence tagging approach is particularly useful for finding
post translational modifications (PTMs), as many of these
short amino acid words can be determined that are not
influenced by the PTM. This is because the sequence tagging
approach looks at the spacing between peaks and not at their
absolute masses. Similarly, missing peaks, missed and
unanticipated cleavages are not so problematic in the
sequence tagging approach. From the point of view of
database searching, sequence tagging is not radically
different from spectral matching. The difference lies in the
fact that the query spectrum is transformed to amino acid
word sequences, and the database is not converted into
spectra. Word based searching is one of the oldest, though
not the most sensitive, methods in sequence comparison. In
this particular application, the selectivity of the search is
increased by the fact that we identify words in peptides
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Table 3. List of Database Search-Based Protein Identification Software’s
Name License Distributor Web Address Ref
Database Search
Sequest Proprietary ThermoFinnigan http://fields.scripps.edu/sequest/ [34]
Mascot Proprietary Matrix science Inc. http://www.matrixscience.com/ [57]
X!tandem Open source TheGPM http://www.thegpm.org/ [55]
Phenyx Free on-line version, GenBio http://www.genebio.com/products/phenyx/ [32]
OMSSA Open Source NCBI http://pubchem.ncbi.nlm.nih.gov/omssa/ [36]
MyriMatch Open Source Vanderbilt Medical Center https://www.mc.vanderbilt.edu/msrc/bioinformatics | [58]
Graylag Open Source Stowers Institute for Medical Research http://greylag.org/
MassWiz Open Source Institute of Genomics and Integrative Biology http://masswiz.igib.res.in/
Protein Proprietary Thermo Fisher http://www.thermoscientific.com/
Prospector
Andromeda Freeware Max-Planck Inst. http://www.maxquant.org/ [59]
Spectral Matching
Spectra ST ISB http://www.peptideatlas.org/spectrast/ [60]
X! Hunter Open Source TheGPM http://www.theGPM.org [61]
Sequence tag/hybrid Approaches
Inspect Univ. California http://proteomics.ucsd.edu/Software/Inspect.html [62]
GutenTag Yates Lab. http://fields.scripps.edu [63]
Paragon Proprietary Applied Biosystems http://proteomics.ucsd.edu/Software/Inspect.html [64]

Last accesses of web pages were on Feb 28" of 2011.

rather than in entire protein sequences. However it has to be
noted that the direction of short amino acid runs is not
necessarily known, so a naive word search algorithm may
not be efficient in this case. Practical implementations of this
strategy use a structure for the peptide database which speeds
up the searching procedure [56, 62].

8. PROGRAMS

The field of proteomics database searching is still
emerging and there is an ever growing number of database
searching engines (many of which are listed in the Table 3.)
The search engines can be divided into commercial
programs, such as MASCOT and SEQUEST, and freely
available/open source programs such as Xl!tandem and
OMSSA. Direct comparison of these applications is often
difficult, because each search engine uses different spectral
properties for finding a match - and this can be affected by a
particular instrument or experimenter. In other words, a
particular search engine may be the best performer with one
dataset and the worst performer with a different dataset. For
example, a search engine that scores only the b- and y- ions
will do well on datasets where these are the dominant
signals, in datasets with additional ion series, a search engine
that includes more series will tend to do better. In general
terms, direct comparisons of different search engines
indicate that there will be an overlapping set of results, that
many search engines are capable of finding, as well as, a set
of results that are unique to a particular search engine [65].
In order to increase the number, as well as, confidence in the

results, it has become increasingly popular to combine the
results from multiple search engines [5, 65, 66]. However,
this strategy dramatically increases the analysis time, and
multipass algorithms, which use a succession of different
algorithms that are guided to limit redundant searches are
also being developed [51]. Some searching parameters with
their default values are listed in Table 4.

CONCLUSIONS AND PERSPECTIVES

As the proteomics field advances, statistic based search
algorithms have become increasingly vital for the proper
interpretation of these results [35]. In fact, it is virtually
impossible to publish proteomics results without a statistical
analysis of the results [67, 68]. A number of strategies have
been developed to determine the statistical quality of a match
and these can either be an integral part of the search engine
or can be performed on the results of the search engine. It is
important to note that not every strategy is compatible, for
example the scoring algorithm of X!tandem needed to be
altered to remove the hypergeometric distribution to make it
more compatible with ProteinProphet [69].

Although classically used measures of statistical
confidence, such as E-values and p-values, are commonly
used to assess results from search engines, it is becoming
increasingly common to use target-decoy strategies to
accurately determine the false discovery rate (FDR) [28, 33,
69]. The future of database searching will be driven, in part,
by a better handling of the false discovery rate. In fact a
number of recent reports indicate the danger of blindly
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List of the Most Common Parameters of the Database Search Software’s

Parameter name Default Values

Description

Taxonomy Human, prokaryotes, viruses, etc. Determines organism where the sample is from
Mass tolerance <1.0 Dalton The precursor mass difference for database filtering.
Match tolerance 0.4 Dalton The difference within two peak positions considered equal. i.e. the

resolution of the spectra.

List of modifications (chemical, PTM) Oxidation, Alkylation of cysteine

The number of the modification exponentially increases the searching

A fixed list of modification. Using this modification.

time.
Number of miscleavages 1,2 Number of the missed cleavages during the enzymatic digestions.
Digestion enzyme Trypsin, The enzyme that is used to digest the proteins.
Filtering threshold (log(E-value)) -1 Threshold to label a hit to be significant.

adhering to particular statistical models [70-72]. These
discrepancies indicate the need for independent means of
validating the results from proteomics search engines. This
validation can take the form of using rescoring algorithms to
further validate the initial analysis [73, 74], or can be more
complex and take into account information from other
databases, such as Gene Ontologies or Protein Interactions
[75]. This latter category of validation has the potential for
revolutionizing the field, as a large amount of effort is spent
on trying to understand which parts of a large list of results
are the most biologically relevant.
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