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Abstract: SBASE is a project initiated to detect known domain types and predicting domain architectures using sequence 
similarity searching (Simon et al., Protein Seq Data Anal, 5: 39-42, 1992, Pongor et al., Nucl. Acids. Res. 21:3111-3115, 
1992). The current approach uses a curated collection of domain sequences – the SBASE domain library – and standard 
similarity search algorithms, followed by postprocessing which is based on a simple statistics of the domain similarity 
network (http://hydra.icgeb.trieste.it/sbase/). It is especially useful in detecting rare, atypical examples of known domain 
types which are sometimes missed even by more sophisticated methodologies. This approach does not require multiple 
alignment or machine learning techniques, and can be a useful complement to other domain detection methodologies. This 
article gives an overview of the project history as well as of the concepts and principles developed within this the project. 
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INTRODUCTION 

 Classification of proteins is a fundamental technique in 
computational genomics. Prediction of known domain types 
within a protein sequence can be regarded as a special sub-
case of protein classification. Namely, while general classifi-
cation methods assign a general, global descriptor (annota-
tion) to an entire protein, domain prediction methods use 
similar computational techniques to assign local descriptors 
to a specific segment of a protein sequence. Generally speak-
ing, domains are the structural and functional building blocks 
of proteins that can exist, evolve and function independently 
of the rest of the protein chain. While globular domains have 
a defined 3D structure and their sequences can be readily 
identified with bioinformatics methods, non-globular seg-
ment have biased composition and pose problems in similar-
ity searching. We start our overview by placing protein do-
main prediction into the framework of protein classification. 

 General methods of protein classification fall into four 
broad categories. i) Pair-wise comparison methods work by 
comparing an unknown object (protein sequence or struc-
ture) with members of an a priori classified database of pro-
tein objects. The results are ranked according to the similari-
ties and the strongest similarities are evaluated in terms of 
biological or statistical significance, after which a query is 
assigned to the class of the most similar object. ii) Genera- 
tive models are based on consensus (or aggregate) descrip-
tions of protein groups. Methods for preparing consensus  
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descriptions include regular expressions, frequency matrices, 
profiles and Hidden Markov Models. The unknown query is 
then compared to a collection of generative models and the 
strongest similarities are evaluated and used to assign the 
protein to the given class. iii) Discriminative models seek to 
determine a boundary between a class (positive group) and 
its immediate similarity neighborhood (negative classes). 
Such boundaries are established with learning algorithms, 
among which kernel methods, in particular support vector 
machines (SVMs) are extremely popular. iv) Network mod-
els use a graph-like representation in which proteins are the 
nodes and similarities are the (weighted) edges. Such a net-
work can be evaluated by simple local statistics or by propa-
gation algorithms such as the PageRank algorithm [1] used 
in the Google search engine that was successfully applied 
later to protein similarity searching [2]. 

 The overall development trend can be best traced by how 
the background similarities are incorporated into the classifi-
cation scheme. On the one extreme, supervised classification 
schemes assume a priori knowledge on all protein classes 
i.e. a full knowledge of the background similarities, while on 
the other extreme, unsupervised classification assumes none. 
Protein domain prediction methods we are concerned with, 
fall into the broad mathematical category of supervised clas-
sification, but they differ widely in the form and amount of 
background knowledge used in the analysis. For example, 
when we accept pairwise similarities only above a given 
score value, we concentrate our knowledge of the back-
ground into a single number, a database-wide threshold 
value. Or, when we use generative models, such as HMMs, 
we assume knowledge on all protein classes. If we train 
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SVMs for the protein groups, we assume knowledge on all 
classes as well as their neighborhoods. In the case of network 
models, the knowledge is implicit to the similarity network. 
Finally, protein classification methods differ in their needs 
for human intervention. Generative models based on multi-
ple alignment (MA) need human experts to look at the 
alignments, which add to the overheads of database mainte-
nance. 

 We can now place the SBASE approach in the hierarchy 
of protein classification methods. SBASE is a project estab-
lished for detecting protein domain types based on the se-
quence. It uses a database of domain sequences collected 
from curated primary sequence databases – the SBASE do-
main library – as well as a set of similarity search algorithms 
that operate either on this collection or on the primary se-
quence databases themselves. SBASE search algorithms use 
pairwise similarities for domain detection, without MAs. 
Instead of a single, database-wide threshold, SBASE uses 
individual threshold values for the various protein classes. In 
addition, the threshold values are applied to network parame-
ters such as the number of links between proteins, so the 
properties of the similarity network are also taken into ac-
count. In summary, SBASE tries to build on various parame-
ters of the background similarities that can be simply ex-
tracted from an all vs. all database comparison. This makes it 
possible to have a system that can be maintained with mini-
mal human intervention and minimal computer resources. As 
opposed to generative models used by such comprehensive 
collections as the Interpro project [3], SBASE is a database-
driven approach that facilitates detection of atypical exam-
ples Fig. (1). From among the BLAST-based, database-
driven systems that are more related to SBASE, PRODOM 
uses automatically generated domain families [4], as op-
posed to the curation-based classification scheme adopted in 
SBASE. Finally, the SYSTERS database developed by the 
Vingron group is based on an iterated researching algorithm 
on entire protein sequences that makes it possible to assign a 
sequence to a sequence cluster [5]. 

 The rest of this paper is structured as follows. We first 
review the project history and the development of the main 
ideas. Next, we describe the SBASE protein domain se-
quence library and its use in domain architecture prediction. 
Subsequently we describe the issues of performance check-
ing and database maintenance. The review finishes with a 
summary of conclusions and future trends in which we place 
the approach within the broader context of segment-based 
annotation techniques. The review is accompanied by a 
Glossary of terms and concepts used, and partly developed 
within the SBASE project (Appendix). 

MOTIVATION, PROJECT HISTORY 

 The generative models used for protein identification in 
the early 90’s were based on MAs. The motivation behind 
the SBASE project was to use pairwise alignments directly 
for finding known domains, without the necessity to con-
struct and curate MAs and /or generative models. The reason 
was three-fold: i) Generative models (such as consensus se-
quences, regular expressions, sequence profiles, hidden 
Markov models etc) and MAs are difficult to maintain in an 
automated way. The process requires human expertise and 

careful judgment hence it can hardly keep pace with the flow 
of new genome data. ii) Generative models unify the descrip-
tion of individual sequences included so they are necessarily 
biased towards an average description. This makes the dis-
covery of atypical proteins difficult, which is a major prob-
lem since new genomes inevitably contain novel variants of 
the known proteins. iii) There are domain types for which it 
is not easy to develop consensus representations because of 
weak similarities. It was speculated that an annotated protein 
database record contains the domain architecture and the 
sequence of a database entry, so an alignment against such a 
record should give direct indications on domain homologies. 
The knowledge base of such a system is the annotated se-
quence database itself, the task was to design tools that can 
combine sequence alignment scores with the annotation in-
formation (domain architecture, “feature table”). From this 
point of view, domain similarity search is a two-fold sorting 
exercise: the highest scoring similarity regions (such as 
BLAST HSPs (High-scoring Segment Pairs)) have to be 
sorted by score as well mapped to the query sequence. Two 
principles were considered Fig. (2): 

1) The domain library approach consists in building a do-
main sequence collection using annotated sequence seg-
ments collected from annotated sequence databases. 
Search against this database would directly give domain 
similarities which can be easily turned into domain ar-
chitecture cartoons. The advantage of this approach is 
that one can use any similarity search program [6, 7]. 

2) The FTHOM approach was named after the post-
processor program built for the purpose. This approach 
consists of searching a database of annotated proteins 
(such as Uniprot) and evaluating the domain similarities 
by comparing the similarity regions of the output with 
the feature table (domain architecture) given in the an-
notation part of the database record. The advantage of 
this approach is that one does not need a separate do-
main collection, however it does not provide boundaries 
between domains of the same type [8, 9]. 

 Both approaches depend on two factors: i) The quality of 
domain annotations in primary databases. In the early data-
bases, annotations were given in highly overlapping fashion, 
so regions, repeats, domains, biased composition regions 
were all part of the feature table. One had to select which of 
these should be considered in the domain prediction process. 
ii) The approach used by the search programs. Each search 
program defines similarity regions in a slightly different 
manner, some only give the highest scoring regions, others, 
like BLAST [10] give several local alignments. Naturally, 
the speed of the search is a major consideration, and since 
1998 BLAST has become the main search tool. 

 The first published result of the project was a search 
against a sequence collection of known domains using the 
FastDB program [6, 7]. As far as we are aware this was the 
only publicly available domain sequence collection at the 
time (Uniprot and annual releases were published in the sub-
sequent years) [11-21]. 

 An important step of the development was to include the 
entire network of sequence similarities into the evaluation 
process [22, 23]. So query sequences were evaluated not
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Fig. (1). Database-driven approach. Database driven approaches give an equal weight to atypical and typical domain sequences which are 
sometimes overlooked as “noise” when the generative models are built on an ensemble of exemplars. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Database-driven segment annotation. Two principles of database-driven segment annotation. (a) In the domain library approach, the 
query is compared with a database of annotated protein segments and the regions of similarities are mapped to the query sequence to give a 
final domain assignment. (b) In the FTHOM (feature homology search) approach, the query is compared with a database of fully annotated 
proteins, and the alignments are mapped in a position-specific manner to the query sequence. This gives rise to a series of sequence plots that 
are then computationally processed to give a final domain assignment. 
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Fig. (3). The similarity network approach. (a) The library of known domain sequences is compared to itself with a program so as to give a 
network of similarities. Based on the known domain classes, within group and between group similarities (“self” and “non-self” respectively) 
are identified. When a protein query is compared with the domain library, assignment is based comparing the query vs. group similarities with 
the self and non-self similarities. (b) The neighborhood of each domain group is described as a vector of local network parameters [22]. A 2D 
plot shows the separation of self and non-self group members around the ABC transporter group. Such low-dimensional descriptions are eas-
ily amenable to machine learning applications [9, 13]. 

 

only with a simple database search, but an all vs. all com-
parison of the database against itself was also used as back-
ground knowledge. In this perspective, a similarity search 
provides links between a query and its immediate neighbor-
hood. The similarity network (i.e. the network of all known 
domains) contains all neighborhoods that appear as more or 
less densely connected regions within the network, where the 
nodes are domains and the edges are significant similarities 
weighted by a parameter such as the BLAST score. When a 
new sequence is compared with a database represented as a 
similarity network, a similarity region (e.g. BLAST HSP) 
will be classified to the closest neighborhood, provided the 
similarities exceed certain thresholds Fig. (3). This approach 
is a discriminative model where the important parameters 
(e.g. thresholds of within-group and between-group similari-
ties define the boundaries of a neighborhood) are simply 

extracted from the all vs. all comparisons. The similarity 
network can thus be regarded as the memory of the system 
that is built continuously as new domains become known. 

 The evaluation of the results was based on sequence 
similarity, even though for “difficult domain types” that 
typically constitute 5-10 percent of the known domain types, 
machine learning algorithms were also used such as neural 
networks [9] and SVMs [13]. Machine learning applications 
for protein classification usually rely on a description of the 
protein structure or sequence that can be turned into a vector, 
suitable for training. The distinctive feature of the neural 
network and SVM applications used in the SBASE project 
was that they used vectorial descriptions of the sequences 
that were derived from a similarity with respect to protein 
groups. This is a low dimensional, aggregate description that 
builds on the salient features of the similarity space. 
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 From the beginning, SBASE was conceived as an aca-
demic pilot project carried out by a small research group. It 
became clear however that the collection could not keep pace 
with the amount of data, so from 2006 we replaced the origi-
nal domain collection by a curated subset of INTERPRO 
collection [3] that we complement with established domain 
types from other sources (PFAM [24], SMART [25], Swiss-
Prot annotations [26] etc.). At present the SBASE project 
concentrates on testing various experimental sequence simi-
larity search principles that are incorporated into the web 
servers maintained at ICGEB Trieste. 

THE SBASE DOMAIN LIBRARY 

 SBASE was conceived as a database of annotated protein 
sequence segments. In the early years, the sequence segment 
definitions were taken from databases such as SwissProt, 
PIR, and additional entries were collected from translations 
of such as EMBL [27] and GenBank [28] as well as from 
research articles recommended by colleagues, on an ad hoc 
basis. As the database annotations contained not only protein 
domains but also biased composition regions, repeats, signal 
peptides, etc. – including regions that were identified by 
computation –, some of these were also included into the 
collection. The early releases (1.0 to 9.0) are available at 
ftp://ftp.icgeb.trieste.it/pub/SBASE/. The early releases were 
comprehensive, in the sense that we tried to include, when-
ever possible, all known instances for all domain types. 

 From 2003 the releases were accessible only via the web 
interface and from 2006 we only included (mostly globular) 
protein domain types annotated within the INTERPRO col-
lection, so we did not include signal peptides, transmem-
brane regions, biased composition regions, etc. This allowed 
us to bring down the collection size to around half a million. 

From about 2005 even this reduced set of domain types con-
tained more than a million entries so we started to filter the 
database according to 90 percent identity. This allowed us to 
bring down the database size again to a manageable size 
while keeping representatives of the atypical domains. The 
current size of the SBASE collection is ~736 thousand do-
main sequences. The statistics of the protein groups includes 
phylogenetic coverage, references to primary sources as well 
as a list of calculated physicochemical and other measures 
Fig. (4). 

Domain Prediction Using the SBASE Library 

 The current search engine behind SBASE is BLAST. 
Given a protein sequence query, the system will first identify 
signal peptide and transmembrane regions, then submit the 
corresponding sequence to BLAST that will compare it with 
the SBASE collection. The domain similarities exceeding 
group-wise thresholds are mapped on the query sequence 
according to a greedy algorithm that proceeds in descending 
order of the similarity scores. An output example is shown in 
Fig. (5). The strength of the method is its sensitivity towards 
the known atypical examples of protein domains that are 
often missed even by more sophisticated methods such as 
generative models see Fig. (1). An example of this are the 
highly variable HEAT repeats whose instances easily de-
tected by human annotators but are often missed by genera-
tive models. At the same time, SBASE based either on 
BLAST, or by Smith-Waterman, detects most of these re-
peats Fig. (6). With this we do not claim that similarity based 
segment annotation is more sensitive than other techniques, 
just that it can be a useful complement to other, more sophis-
ticated methods. 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Statistical summary of a protein group of SBASE. The summary includes the phylogenetic distribution of the protein group (domain 
type), the reference to the sequence sources as well as a calculated statistics of sequence composition features. 
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Fig. (5). Search output of the SBASE domain predictor. 

Performance Checking 

 The performance of domain predictors can be evaluated 
according to the known principles of classification, i.e. using 
the well known scheme of true positives (tp), false positives 

(fp), true negatives (tn), false negatives (fn). Characterizing 
the performance of domain prediction according to this 
scheme is only seemingly easy, because of a few theoretical 
and statistical issues. 

 The discrepancies between predicted and known domain 
architectures can fall into different categories that can not be 
easily summarized by a single performance measure. The 
strategy used for developing SBASE was based on following 
a hierarchy of statements as follows: 

a) Presence-absence level: a protein that has a certain do-
main type and is predicted to have at least one is a tp. So 
if we predict one single Ig-like domain in Titin (152 Ig-
like domains) it counts already as a positive hit. 

b) Composition level: A protein that has n number of cop-
ies of a certain domain type should be predicted as hav-
ing at least the same number of domains in order to 
qualify as tp. If less domain copies are predicted, the 
prediction is incorrect. 

c) Architecture level: A domain should be predicted with 
the correct boundaries, say within 5 amino acids from 
those known. In this case, if any of the domains of a 
given type have boundaries outside the given range, the 
prediction is incorrect. 

 Of these, level a) is very permissive, all methods will 
perform equally well at this level. On the other hand, it is not 
easy to find a gold standard for levels b) and c), because the 
known collections differ in many details, the number of do-
mains often differs, atypical domains are frequently missing, 
etc. 

 The statistical problems are related to the structure of the 
protein similarity space which is shaped by domain evolu-

 

 

 

 

 

 

 

 

Fig. (6). Prediction of HEAT repeats by various methods. HEAT repeats are ~40 residue long helical hairpin structures of highly variable 
sequence that assemble to larger structures. The regulatory subunit of human serine phosphatase 2A has 15 such repeats annotated in Swiss-
Prot (2AAA_HUMAN). This type of repeat is difficult to detect by domain prediction servers using the default settings (PFAM, lower line). 
Some servers, such as CDD detect a few repeats at higher sensitivity parameter settings, but none at lower sensitivity settings. BLAST 
SBASE detects all repeats at standard settings, except the 4th repeat which is not detected by any of the servers. 
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tion. Namely, the real test of a domain predictor is to recog-
nize novel variants of known domain type. So if we want to 
check how well a certain domain in a given parent protein is 
predicted, we have to make sure that either a) the parent pro-
tein or b) the whole proteome of the parent protein is ex-
cluded from the construction of the predictor. A similar prin-
ciple was applied by the groups of D. Haussler [29] and W. 
Noble [30] who trained predictors on protein families of a 
given superfamily (training set) and tested it on members of 
a protein family not included in the training. Applying this 
principle to machine learning algorithms is laborious, since 
in order to systematically exclude the homologues of test 
queries from the training set, one has to build a new classi-
fier (new generative or discriminative model) for each test 
case. Methods using MAs pose extra difficulties since, at 
least in principle the MAs should be rebuilt (and manually 
checked) for each test case. For instance, it is not sufficient 
to delete some of the proteins from an existing MA because 
the gap structure of the MA will continue to contain informa-
tion on the deleted proteins (i.e. on the test group). These 
statistical difficulties can be relatively easily taken care of 
with systems based on pairwise similarities such as SBASE 
since the various threshold values that depend on the training 
set can be simply and automatically recalculated for each test 
case and no time-consuming learning phase is involved. So 
one can easily ask such questions as, e.g. “How would the 
system perform if we were to discover this organism right 
now?”, or “How could we predict the first eukaryotic ge-
nome based on prokaryotic genomes only”? 

 Testing and comparing domain predictors is difficult 
since it requires standardization of i) datasets and classifica-
tion tasks; ii) standardized sequence/structure comparison 
methods; iii) classification algorithms; and iv) a validation 
protocol. On the other hand, the published results are often 
based on different and sometimes obsolete datasets and pro-
gram versions and without sufficient detail necessary to re-
produce the calculation procedure. In order to alleviate these 
problems we developed a benchmark collection of sequences 
[31, 32] In this system we use ROC (receiver operating char-
acteristics) analysis for testing predictor performance [33]. 

 A separate problem is related to the heterogeneity of the 
protein groups that range in size from 2-3 members to sev-
eral thousand members. One problem is the overwhelmingly 
large size of the negative dataset, which is often treated by 
truncating the top lists [34]. This approach can help one to 
compare the performance of predictors on the same group 
but does not allow one to compare groups of different sizes 
using the same predictor. As the latter task is crucial for pin-
pointing difficult groups in a domain database, we developed 
the method of balanced ROC analysis, where the size of the 
negative group is standardized based on the size of the posi-
tive group [35]. 

Maintainability Issues 

 Maintenance of a domain sequence database is more than 
simply collecting sequences. Today it also includes mainte-
nance of group descriptions that include information of func-
tional roles, phylogenetic coverage, 3D structure etc which is 
a task that only large groups of professional annotators can 
cope with. The organization and visualization of the data is 

also becoming a separate field and some sites offer highly 
rich and complex views on domain architectures. The times 
where databases were striving for complete coverage of se-
quence data have apparently passed, with the vast number of 
ongoing sequencing projects not even the largest collections 
can realistically hope for comprehensive coverage of known 
sequences. 

 The strategy chosen within the SBASE project is to reach 
good predictive coverage, i.e. we try to include a) newly 
published domain sequence groups, as well as b) new mem-
bers of established groups provided they are more than 10% 
different from the known members of the group. All this 
keeps the maintenance overheads quite low while allows for 
a predictive coverage that compares well with other, sophis-
ticated search programs. 

CONCLUSIONS AND FUTURE TRENDS 

 Against a fast evolving background of sequence collec-
tions and prediction methods, it is difficult to predict the 
future of a small academic project like SBASE. On the other 
hand SBASE can easily cope with atypical domains so it is a 
useful tool to complement other methods of domain predic-
tion. 

 From the methodological point of view, the approach of 
SBASE is part of a larger group of methods termed segment-
based sequence annotation [36]. Namely, SBASE assigns 
discrete domain annotations to protein segments based on a 
particular method, sequence similarity searching. There are 
many other computational tools that can assign a variety of 
annotations based on different principles that are either dis-
creet or parametric (quantitative) in character Fig. (7). Dis-
crete methods assign a feature on a yes/no basis, while a pa-
rametric method provides a quantitative measure that can be 
plotted along the sequence. In such a plot the putative seg-
ments appear as peaks. Summary feature descriptions Fig. (7, 
bottom) are reminiscent of the familiar domain architecture 
cartoons, the important difference being that computationally 
generated segments can be overlapping. 

 A genome annotation system may use a battery of these 
methods to assign segments. For example ANNOTATOR is 
an annotational pipeline [37] that uses over 20 of the most 
useful annotation algorithms (Table 1) covering the first two 
steps of segment- based sequence analysis [38] that have 
proven to be indispensable in daily sequence analytic work 
for functional discovery [39-41]. Of particular value is the 
inclusion of predictors for a number of post-translational 
modifications [42-47] as well as targeting signals [48, 49]. 
ANNOTATOR is an environment designed to aid function 
prediction for uncharacterized protein targets that are diffi-
cult because of the absence of closely related, well character-
ized homologues. Therefore, it needs to include as many as 
possible prediction tools that recognize various sequence 
pattern-function relationships. We think that including a pro-
tocol of domain detection based on SBASE would further 
enhance the predictive power of the ANNOTATOR envi-
ronment. 

 In addition, there are a number of technical improve-
ments that can increase the competitiveness of database-
driven methods. The GPU-based version of the Smith-
Waterman algorithm produces run times approaching those
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Fig. (7). Segment-based annotation uses either a quantitative parameter (left) or a discrete yes-no decision (right) to assign annotations to 
sequences. In the parametric case, we have as many sequence plots as there are segment annotation types. A sequence plot can be transformed 
to segments, for instance by applying a threshold value (as shown under A, left). Summary descriptions are reminescent to the domain 
architecture cartoons. The domain similarity plot of FTHOM (Fig. (2)) is in fact a parametric domain similarity summary. 
 

Table 1. Algorithms Used in the Automated Annotation Pipeline ANNOTATOR [37] 

Algorithm Description Type
* 

Reference 

CAST  Algorithm for low-complexity region (LCR) detection and selective masking 1 [50] 

IUPred  
Prediction method for recognizing ordered and intrinsically unstructured/disordered regions in 

proteins 

1,2 
[51] 

SAPS 
Statistical analysis of protein sequences with respect to amino acid composition and simple 

sequence motifs 

1,2 
[52] 

SEG  Prediction of low complexity regions 1 [53] 

Big-   Prediction of protein GPI lipid anchor cleavage sites 4 [42-44] 

NMT  Prediction of N-terminal N-myristoylation of proteins 4 [45, 46] 

PrePS – FT  Farnesylation prediction 4 [47] 

PrePS – GGT1  Geranylgeranylation prediction 4 [47] 

PrePS – GGT2  Rab geranylgeranylation Prediction 4 [47] 

PeroPS/PTS1  Prediction of peroxisomal targeting signal 1 4 [48, 49] 

DAS-TMfilter  Prediction of transmembrane regions 1,5 [54] 

HMMTOP  Transmembrane topology prediction using Hidden Markov models 1 [55] 

PHOBIUS  Combined transmembrane topology and signal peptide predictor 4 [56] 

TMHMM  Transmembrane helix predictor 1,2 [57] 

IMP-COIL  
Prediction of coiled-coil regions, modified implementation of the algorithm Lupas et al. by F. 

Eisenhaber 

1,2 
[58] 
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(Table 1) contd…. 

Algorithm Description Type
* 

Reference 

PROSITE  Pattern search in the PROSITE database 3 [59] 

PROSITE-Profile  Profile search in the PROSITE database 3 [59] 

HMMER  Profile Hidden Markov Models 3 [60] 

IMPALA  Tool to compare a query sequence against a library of position-specific scoring matrices 3 [61] 

RPS-BLAST against CDD  Reverse-position-specific BLAST against the Conserved Domain Database (CDD) 3 [62] 

*Types: 1=calculaton on the fly, 2 = based on statistically derived tabulated values, 3 = generative model, 4 = discriminative model, 5= calculation on a data-

base. 

of the BLAST algorithm on CPUs. The GPU-based align-
ment programs of Manavski and Valle [63, 64] has been 
adapted to the SBASE system and seems to improve the pre-
diction of atypical domains. Prediction quality can further 
improve by including a jury of predictors that use alignment 
parameters which can be simply extracted from the search 
results [65]. Taken together, similarity based detection meth-
ods are useful complements to other, more sophisticated do-
main detection methodologies and their simplicity and versa-
tility makes them suitable to solve annotation tasks, espe-
cially in the view of increased computational speed of cur-
rently appearing computer technologies. 
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APPENDIX 

Glossary of Terms and Concepts 

Similarity Groups 

 The similarity group is a group of molecules that share a 
well-defined type of similarity [66]. This similarity can be 
local or global, structural or functional etc. Biologically im-
portant similarity groups, such as those of protein domains 
share global structural similarities, as all group members are 
characterized by a common sequence-description or a com-
mon fold-description. On the other hand, they are not neces-
sarily similar in the functional sense. Sequence similarity 
groups can be best pictured as a weighted graph where nodes 
are protein sequences and edges are the similarities between 
them, weighted by similarity score. Sequence pairs with 
similarity scores below a certain threshold are not connected.  

Within-Group and between-Group Similarities 

 These terms denote similarities between members of the 
same or of different protein domain groups, respectively. In 
the ideal case, members of a given group are connected only 

with themselves, so “well-separated” groups have no be-
tween-group similarities. On the other hand, certain “over-
lapping” or “connected” groups share a significant number 
of similarities. Such cases can lead to erroneous annotations 
if only pairwise similarities are considered, however the 
network-based scoring outlined in Fig. (3b) is often success-
ful. 

Descriptors, Local and Global 

 The annotation of proteins can be pictured as attaching 
descriptors – pieces of information – to a database entry. The 
annotation part of sequence records contains descriptors that 
refer to the entire protein, such as the ID, the accession num-
ber, the function, etc. These are global descriptors. Other 
descriptors, such as those in the feature table (domains, ac-
tive sites, mutations, etc.) refer to a well defined part of the 
protein, these are local descriptors. 

Database-Wide, Group-Specific and Element-Specific 

Thresholds 

 When pairwise sequence comparison methods are used 
for assigning query proteins to functional classes, it is cus-
tomary to apply threshold values. For instance, it is custom-
ary to disregard BLAST similarities if the similarity score is 
below an arbitrary value (e.g. 40). This is a database-wide 
threshold since it is uniformly applied to pairwise compari-
sons between a query and all entries of the database. If the 
database is pre-classified and the sequence classes are 
known, one can separately evaluate the within-group simi-
larities for all protein groups, so one can establish group-
specific thresholds for each group within the database. In 
SBASE, we use a set of such group-specific thresholds Fig. 
(3b). 

ROC Analysis, Elementwise and Groupwise, Balanced 

ROC 

 ROC (ëreceiver operating characteristicsí) analysis is a 
visual as well as numerical method used for assessing the 
performance of classification algorithms [33]. The ROC 
curve is a graphical plot of the sensitivity vs. (1  specificity) 
for a binary classifier system as its discrimination threshold 
is varied. Any ranked list of similarities between a query and 
members of a preclassified database is suitable to calculate a 
ROC curve. The performance measure is the integral of this 
curve (the so-called AUC value) which is 0.5 for random 
classifiers and 1.00 for a perfect classifier (no false positives 
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or false negatives). In group-wise comparison, one prepares 
a single ranked list, in which the members of the positive and 
negative test group are ranked according to their similarity to 
the + train group. In the element-wise scenario, one builds a 
separate ROC curve for the top lists individually taken for all 
members of the + test group. In protein classification due to 
the excessive size of the negative class, truncating the top 
lists after a certain number of false positives [34] makes it 
possible to compare classifiers on the same protein group. 
Comparing protein groups among themselves – a crucial 
problem in finding problematic groups in databases – is pos-
sible by truncating the top list at a size proportional to the 
positive training group [35]. 

Structured and Unstructured Representations 

 All molecular structures, including biological sequences 
can be pictured as graphs consisting of entities and relation-
ships [67]. We use the term “structured descriptions” for 
those descriptions that contain both entities and relation-
ships. Protein 3-D structures and sequences are such descrip-
tions even though the relationships are not explicitly in-
cluded in the actual descriptions found in databases. If a de-
scription contains only entities or only relationships, we term 
it an “unstructured description”. Examples include amino 
acid composition (only entities) and C  distance-
distributions (only relationships). 

Supervised Cross-Validation 

 Cross-validation is a technique wherein a classification 
performance measure – such as ROC AUC – is determined 
on several or many test and train groups selected from the 
same set of data. In traditional cross-validation, the test and 
train groups are selected in a random way. Such tests may 
not give reliable estimates on how an algorithm will general-
ize to novel, distantly related subtypes of the known protein 
classes. The generalization property of a given classifier al-
gorithm can be better estimated by supervised cross-
validation [31], when test and train sets are selected accord-
ing to the known subtypes within each group of database. 
Hierarchical classification trees of protein categories (such as 
used in CATH [68], SCOP [69] or COG [70]) provide a sim-
ple and general framework for designing supervised cross-
validation strategies and benchmark datasets for protein clas-
sification [31, 32]. 

 Detecting atypical examples of known domain types by 
sequence similarity searching: The SBASE domain library 
approach. 
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