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Abstract: The emerging role of internal dynamics in protein fold and function requires new avenues of structure analysis. 
We analyzed the dynamically restrained conformational ensemble of ubiquitin generated from residual dipolar coupling 
data, in terms of protruding and buried atoms as well as interatomic distances, using four proximity-based algorithms, CX, 
DPX, PRIDE and PRIDE-NMR (http://hydra.icgeb.trieste.it/protein/). We found that Ubiquitin, this relatively rigid mole-
cule has a highly diverse dynamic ensemble. The environment of protruding atoms is highly variable across conformers, 
on the other hand, only a part of buried atoms tends to fluctuate. The variability of the ensemble cautions against the use 
of single conformers when explaining functional phenomena. We also give a detailed evaluation of PRIDE-NMR on a 
wide dataset and discuss its usage in the light of the features of available NMR distance restraint sets in public databases. 
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INTRODUCTION 

 Understanding the principles of protein structures is es-
sential to gain insight into biomolecular processes. Enzy-
matic conversions, protein-protein interactions are all based 
on intermolecular recognition dictated by the shapes and 
interacting surface groups of the partners. Recently, the role 
of internal dynamics manifested as structural fluctuations is 
gradually coming into focus [1-3]. The inherently dynamic 
nature of proteins requires the introduction of new ways of 
structure representation, fold identification and comparison. 

 Protein folds are manifested as a set of atomic coordi-
nates in the three-dimensional space. However, all-atom rep-
resentations of proteins are not really efficient for most prac-
tical purposes such as protein visualization or structure com-
parison. Moreover, the inherently dynamic nature of proteins 
means that the set of atomic coordinates is continuously 
changing. Thus, simplified representations capturing the es-
sence of protein folds or specific aspects of structures have 
been developed. The most common representations are based 
on the topology of secondary structure elements and atom-
atom distances. There are measures that assign a single num-
ber to protein folds based on their residue-residue packing 
properties. These measures, contact order [4] and long-range 
order [5], have been shown to correlate with protein folding 
rates. 

 The methods reviewed here, available as free web serv-
ices at ICGEB (http://hydra.icgeb.trieste.it, [6]), make use of 
close or closest distances to capture features of folds or 
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finding structural relatives. CX and DPX assign a parameter 
to each of the protein atoms based on their proximity to sol-
vent, whereas PRIDE and PRIDE-NMR use distributions of 
(typically short) interatomic distances to represent folds ena-
bling rapid scan of structural databases. For the most re-
cently described method, PRIDE-NMR, we give a detailed 
evaluation of its performance on a wide dataset and discuss 
its performance and usage in the light of the quality and 
completeness of available NMR distance restraint sets. 

 Considering the dynamic nature of proteins, we describe 
the applicability of all four methods to dynamic conforma-
tional ensembles. Structural heterogeneity in such ensembles 
stems from the solution-state internal dynamics of the pro-
tein in a range of time scales [7-9]. As a test case, we use the 
recently published dynamic ubiquitin ensemble calculated 
from RDC data and covering dynamics up to the millisecond 
range (PDB ID 2K39, containing 116 conformers) [3]. This 
ensemble has been shown to include conformers close to 
those observed in known structures of ubiquitin complexes 
with other proteins, thus sufficiently sampling the conforma-
tional space accessible to ubiquitin. 

DETAILED EVALUATION OF PRIDE-NMR 

 PRIDE-NMR [10] is a conceptually simple and fast 
method that is able to recognize protein folds compatible 
with a given set of NOE distance data. PRIDE-NMR is not a 
protein fold comparison method, although shares clear con-
ceptual similarities to those, especially to PRIDE (Probabil-
ity of IDEntity, [11, 12], a fast approach based on the com-
parison of H -H  distance distributions in protein structures. 
PRIDE-NMR is based on the comparison of distributions of 
short interproton distances observable as NOE peaks in 
NMR spectra and easily obtainable from known 3D protein 
structures. The number of NOE-derived distance restraints or 
close H-H pairs is represented in a histogram with bins cor-
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responding to the sequential separation of the participating 
residues. To render the algorithm largely independent of the 
sequences of the proteins, only HN, H  and H  protons are 
used for compiling the distributions. 

 The histograms are then compared using contingency 
analysis Fig. (1) similar to the PRIDE method [11]. To en-
hance the specificity of results, a simple weighting of the 
scores was also introduced based on the lengths of the query 
and hit proteins Eq. (1): 

x

x
proteinlongeroflength

proteinshorteroflength
NMRPRIDEWNMRPRIDE =
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___
_

Eq. (1) 

 Where PRIDE-NMR is the raw score calculated with the 
contingency test, PRIDE-NMR_Wx is the weighted score 
according to exponent x where x can be 1, 2 or 3 in the cur-
rent implementation. The weighted score is always less or 
equal to the original one, ensured by choosing the length of 
the longer protein as denominator, regardless of whether it 
corresponds to the query dataset or to one in the database. 

 The PRIDE-NMR method was initially evaluated on a set 
of 40 proteins chosen as a representative subset of the SCOP 
database and having a restraint/residue ratio greater than 1.0 
[10]. In order to yield a more realistic picture of the perform-
ance of the approach with typical NMR datasets, we per-
formed a more comprehensive evaluation using as many 
protein structures as possible at the time of analysis. The 
protein test set was compiled as all available single-domain 
NMR structures in the PDB [13] as of 24 September 2007 
classified in the SCOP database [14], having at least one 
homologue in SCOP at the family level and with deposited 
NMR distance restraint set in X-PLOR format (Fig. 2). 

 We have performed the search and evaluation as de-
scribed previously [10]. The database is based on the 95% 
homology-filtered subset of SCOP and structures were taken 
from the ASTRAL database [15]. We carefully analyzed the 
reasons of failure where the method could not identify struc-
tural relatives of the protein corresponding to the query 
dataset, defined as finding hits in the same SCOP family as 
the query. 

Performance of the PRIDE-NMR Approach on a Large 
Set of Structures 

 In accordance with our previous test, the test was positive 
if when the first N hits contained a structural relative of the 
query at the SCOP superfamily level [10], where the cases of 
N=5 and N=100 were investigated. The performance of the 
PRIDE-NMR approach on a large data set is somewhat 
lower than reported for a limited set of structures. However, 
the performance of 75% is still comparable to those of the 
better performing protein fold comparison servers [16]. Di-
rect comparison is impossible because of the differences in 
the test data sets, as in PRIDE-NMR the query dataset is 
obtained differently than those in the database, i.e. experi-
mental vs. structure-derived distances are used, whereas pro-
tein fold comparison servers use structure-derived data both 
for storage and query. Thus, for PRIDE-NMR cases where 
the restraint set is capable to retrieve its corresponding PDB 
entry could also be regarded positives. However, to conform 
to conventions in evaluating fold comparison methods, self 
hits, i.e. where the query and the hit belongs to the same 
PDB ID were excluded from the analysis. 

 As reported earlier [10], best results are obtained using a 
distance cutoff of 5 Å for back-calculating short interproton

 

 

 

 

 

 

 

 
 
 
Fig. (1). Schematic outline of the PRIDE-NMR method. PRIDE-NMR uses statistical comparison of distance distributions from NOE data 
measured experimentally and back-calculated from structures. The distance distribution represents the number of close proton pairs vs. the 
sequential distance. The resulting probability is the PRIDE score which can be weighted according to Eq. (1). (The number of pairs and the 
sequential distance are dimensionless quantities.) 
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Fig. (2). Scheme of the selection of structures used in the PRIDE-NMR survey (A). Distribution of the 806 selected proteins according to 
(intrabackbone) restraint per residue ratios (B), length (C), and SCOP class (D). The SCOP class categories are the following: a) all-  b) all-  
c) /  d) +  e) multidomain proteins f) membrane and cell surface proteins g) small proteins 
 

distances from 3D structures, or when the PRIDE-NMR 
scores obtained for the 5 and 6 Å or the 5,6 and 7 Å cutoffs 
are averaged (Table 1). This indicates that, not surprisingly, 
NOEs corresponding to 5 Å or shorter distances dominate 
the deposited restraint lists. 

 Investigating the cases not yielding positive hits in our 
PRIDE-NMR survey, we could identify three common rea-
sons why NOE datasets are unable to represent the fold 
properly in our approach: 
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Table 1. PRIDE-NMR Results for the 806-Membered Test Set. Self Hits (i.e. when the Hit has The Same PDB ID as the Query) 

were Excluded From The Analysis. The Distances in Ångstrøms Refer to the Distance Cutoff(s) Used (Multiple Numbers 

Mean that Both Cutoffs were Used and The Scores Averaged). Weighting Refers to The Scores Calculated as Shown in Eq. 

(1) 

Distance Cutoff d=5  d=6  d=7  d=5, 6  d=6, 7  d=5, 6, 7  

Weighting  First 5 First 100 First 5 First 100 First 5 First 100 First 5 First 100 First 5 First 100 First 5 First 100 

positive hit % 17.62 49.38 10.79 36.60 8.19 30.40 17.62 46.40 10.05 36.48 13.52 42.80 

W0 
avg. no. of 

positive hits 
0.33 2.46 0.20 1.86 0.17 1.60 0.32 2.39 0.20 1.87 0.26 2.22 

positive hit % 36.85 67.74 20.60 50.99 15.63 43.92 36.72 67.74 21.34 55.46 34.12 66.38 

W1 
avg. no. of 

positive hits 
0.75 4.36 0.41 2.84 0.30 2.37 0.77 4.33 0.43 3.26 0.69 4.11 

positive hit % 39.08 70.72 23.45 57.32 18.24 51.36 39.83 71.96 24.81 63.15 36.97 71.59 

W2 
avg. no. of 

positive hits 
0.81 5.07 0.46 3.33 0.35 2.91 0.83 5.13 0.51 3.94 0.77 5.01 

positive hit % 43.67 75.06 27.79 63.65 19.73 57.57 42.06 75.31 28.78 66.38 40.45 75.31 

W3 
avg. no. of 

positive hits 
0.88 5.67 0.53 3.92 0.39 3.57 0.88 5.75 0.58 4.63 0.83 5.68 

 

• Restraint lists may contain only limited data, e.g. num-
ber of intrabackbone NOEs < 10 or representing less 
than 5 sequential distances (bins). It should be noted that 
structure determination may use a wealth of other NMR 
information besides NOE data, thus scarceness of NOE 
data does not necessarily reflect a structure of poor ac-
curacy and may be biologically relevant anyway. 

• There are some highly biased distance distributions: if 
the majority of the data fall into one or two bins, the 
combination of bins to ensure that none of them contains 
less than 5% of the data results in erroneously low prob-
ability values upon comparisons to other distributions. 
This is observed for structures with helical segments and 
few long-range NOEs. By default, PRIDE-NMR uses 
the minimum sequential distance of 3 residues (NOEs 
between residues i-i+3 are used), this can be adjusted to 
4 or 5 to avoid computational problems with helical 
structures. 

• Several structures contained suspiciously high number 
of intrabackbone restraints per residue and these were 
also poorly performing in the tests.  

• There can be some other reasons, e.g. a structure atypi-
cal for its SCOP family in some respect (e.g. chain 
length) might also fail in our approach with weighting, 
and in this case the unweighted results might be rele-
vant. 

Examples of Poorly Performing Structures 

 We have selected three structures for which PRIDE-
NMR fails to identify structural relatives for various reasons 
Fig. (3). 

• 1P88: All related domains in SCOP are much longer, 
over 400 residues long, thus, PRIDE-NMR's weighting 
scheme, ensuring that only proteins of similar size yield 
top results, diminishes its performance. Unweighted re-
sults are realistic and representative (first 3 hits are in 
the same SCOP class), proving the usability of the 
PRIDE-NMR concept itself and emphasizing the impor-
tance of separate parameterization in special cases. 

• 1VND [17]: Strangely, all possible H-H distances are 
represented in the restraint file, those not corresponding 
to observed NOEs with an artificially high distance limit 
(99 Å). As PRIDE-NMR does not check for the distance 
represented by the restraints, assuming the only dis-
tances corresponding to observed NOEs are reported, 
this results in an unrealistically high RPR (restraint per 
residue) ratio and completely irrelevant results. 

• 1SP2 [18]: In this short protein there are relatively few 
NOEs, representing too few NOE categories for a mean-
ingful comparison, as contingency analysis fails due to 
the low number of bins to compare. This is a common 
problem for proteins with scarce NOE distance data, 
thus care should be taken when using structures with 
RPR < 1. 

Practical Aspects of PRIDE-NMR 

 The PRIDE-NMR approach is capable of relating NOE 
distance data to known protein folds. Although it is not a 
protein fold comparison server, methods for testing its per-
formance are adapted from those applied to fold comparison 
servers, as they show the closest similarity to its concept and 
are familiar to the structural biology community. 
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Fig. (3). Selected examples for which the PRIDE-NMR search fails. See text for detailed explanation of the reason of failure (RPR: intra-
backbone restraints per residue) 
 

 In the present review, using the widest possible dataset 
we were able to show the performance of the method on data 
commonly available and thus we are able to show the weak-
nesses of both deposited NMR NOE data and the capability 
of the PRIDE-NMR approach, and can highlight the practical 
aspects of using the method, which can be summarized as: 

• Scarceness of NOE data seriously hampers successful 
application of the method. The (intrabackbone) NOE / 
residue ratio should best be above 1. 

• Biased restraint distribution can also be a serious draw-
back. If there are too few NOE categories, the method 
fails. Special care should be taken for helical proteins, 
where the high number of i-i+3 NOEs can yield unspe-
cific results. For these proteins, setting the minimal se-
quential distance to 4 is recommended. 

• For proteins of atypical size among their relatives, ig-
noring length weighting may improve the significance 
of the results. 

• For a dissimilar set of protein structures, the selected 
one in our database might not be the one yielding the 
highest score with the input dataset. This is a conse-
quence of structural heterogeneity in deposited ensem-
bles, an issue discussed in more detail below. 

 In general, running the search with a few parameter com-
binations is advised, as the speed of the method allows this 
to be done in a few minutes and can improve the results. 

Protein Fold Recognition and Information Content of 
NOE Distances 
 1H-1H NOEs carry information about the atomic-level 
structure of a protein sufficient for high-quality structure 
calculations. Therefore, an initial assumption during the de-
velopment of the PRIDE-NMR method was that proton-
proton distances available from experiments might be suffi-
cient for unambiguous 3D fold identification from a database 
similarly to the C -C  distance distributions as used in the 
PRIDE approach [11, 19]. The original PRIDE approach 

uses separate histograms for 28 sequential distances (from 3 
to 30), each with bins of 1 Å width [11]. Indeed, replacing 
the C  coordinates of a protein with H  ones by simple tink-
ering of PDB files yields practically the same results as using 
the original C  coordinates (data not shown). 

 However, H -H  pairs in experimentally derived dis-
tance restraint lists are so scarce that they carry practically 
no information about the fold when used alone. A probabilis-
tic approach using information from other restraints from the 
same residue pair to estimate the C -C  distance also failed 
because of the high uncertainty in the resulting distance lists 
(not shown). Finally, we chose to represent the data in a sin-
gle histogram as a function of sequential distance and with-
out separating NOEs between different atom pairs, i.e. all 
NOEs between any pairs of NH, H  and H  atoms are in-
cluded. This approach yields enough data to uniquely repre-
sent different folds of similar chain lengths. To reduce the 
potential of relating the distance restraint set of e.g. a 50-
residue protein to a 150-residue structure, length weighting 
was introduced (see Eq. (1) above). We note that the histo-
grams contain still only about 10% of the data obtained by 
back-calculating the 1H-1H distances from the 3D coordi-
nates [10]. This means that nearly 90% of the close proton-
proton contacts, at least when considering NH, H  and H  
atoms, remains 'invisible' to NMR measurements for various 
reasons inevitably including the internal dynamics of pro-
teins. Nevertheless, the NMR-derived data performed 
slightly better in the fold recognition tests [10] suggesting 
that NMR is able to capture the 'essence' of protein folds in 
terms of 1H-1H distances. 

PROXIMITY-BASED MEASURES AND DYNAMIC 
PROTEIN STRUCTURAL ENSEMBLES 

 CX [20] is a fast algorithm to identify solvent-exposed 
protruding groups in protein structures. Briefly, it analyzes 
the number of protein atoms in a sphere around the selected 
one and yields the ratio of the volume occupied by atoms 
outside and inside the protein. The CX values are output as 
B-factors in a PDB format file, rendering visualization 
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straightforward. Identifying protruding atoms is expected to 
yield valuable information on residues potentially involved 
in interactions and modifications as shown for trypsin cleav-
age sites of different proteins [20]. Calculating the CX val-
ues for all non-hydrogen atoms of the 2K39 ubiquitin en-
semble revealed that there is a strong correlation (R=0.93 
calculated by omitting all CX values with standard deviation 
of zero) between the average CX value over the ensemble at 
its standard deviation Fig. (4). Interestingly, the average cor-
relation coefficient between CX values calculated for single 
structures and either their average or standard deviation over 
the ensemble is weaker (R=0.82 and 0.75, respectively). This 
means that higher CX value means greater changes in atomic 
environment during conformational dynamics, an observa-
tion in line with previous notions on accessibility measures 
and crystallographic B-factors [20]. In the dynamic ubiquitin 
ensemble CX values successfully identify the two most 
common lysines (Lys48 and Lys63) linked to Gly76 in 
polyubiquitin chains [21]. Lys11 (as practically all lysines) is 
also involved in polyubiquitinylation [21] and Arg54 is in-
volved in initial recognition by the E1 enzyme [22]. Thr9 is a 
potential phosphorylation site by PKC and CKII according to 
the KinasePhos server [23]. Residues with high CX values 
also include those in the flexible C-terminal tail, most of 
which are also involved in molecular recognition processes 
[21]. Naturally, as CX is a tool to identify protruding atoms, 
it cannot be expected by definition to be capable to identify 
all interaction sites such as grooves on the protein surface.  

 The DPX algorithm measures the depth of atoms in pro-
tein structures [24, 25] as their distance to the closest 
(proximal) solvent-exposed atom. DPX thus probes the pro-
tein core and is indicative of fold-stabilizing residues making 
key intramolecular contacts. Atom depth correlates with 
residue hydrophobicity and secondary structure [24]. Groups 
closer to the surface, i.e. with relatively low DPX value 
could be identified as targets for posttranslational modifica-
tions [24]. We also note that buried residues show different 

conformational preferences than solvent-exposed ones and 
their conformation can much less reliably be predicted using 
data from free peptide models [26]. Our results on the 116-
membered dynamic ubiquitin ensemble reveal that there is 
no significant correlation between the average DPX values 
of heavy atoms and their standard deviation (R=0.59 for at-
oms with nonzero DPX value). While for atoms closer to the 
surface there seems to be some tendency as higher average 
DPX means higher deviations, this trend ameliorates at 
around DPX values of 0.5 Å, above which high average can 
be associated with zero or high deviation Fig. (5). This 
means that structural variations affect the protein core in a 
much more complex manner than surface residues. The first 
10 residues bearing the atoms with largest DPX values are 
shown in Fig. (5). This visualization does not account for the 
number of atoms with high DPX values per residue. Never-
theless, it is interesting to note that a designed hydrophobic 
core variant of ubiquitin which turned out to have essentially 
the same structure as the wild-type one [27] bears 7 muta-
tions from which only 3 (Ile4, Val5 and Val26) are among 
the residues with deepest atoms identified in our analysis. 
Thus, identifying and targeting structure-stabilizing residues 
is a fairly complex issue as judged by the diversity of pub-
lished relevant methods [28-30]. We believe that considera-
tion of the internal dynamics of proteins and its capability of 
changing atomic depth and the network of intramolecular 
interactions should be taken into account when identifying 
key atoms in structure stabilization. 

 PRIDE is a protein fold comparison method using C -C  
distance distributions for each sequential distance from 3 to 
30 residues. Its original version [11] uses 28 histograms, one 
for each sequential distance, to represent distance distribu-
tions. These histograms are compared using contingency 
analysis in a pairwise manner for the two structures investi-
gated. A later version of the approach (PRIDE2, [19]) uses 
continuous distributions and Kolmogorov-Smirnov test for

 

 

 

 

 

 

 
 
 
Fig. (4). Residues with high CX values in the RDC-derived dynamic ubiquitin ensemble (those in the flexible C-terminus are not high-
lighted) (A). Correlation of the average and the standard deviation of CX values of atoms in the dynamic ensemble (atoms with exactly zero 
standard deviation are omitted) (B). 
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Fig. (5). Residues with highest atomic DPX values in the RDC-derived dynamic ubiquitin ensemble (A). Correlation of the average and the 
standard deviation of DPX values of atoms in the dynamic ensemble (atoms with zero average DPX are omitted) (B). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig (6). PRIDE and PRIDE-NMR as measures of ensemble heterogeneity. Output of the PRIDE2 server for clustering the first 20 conformers 
for the dynamic ubiquitin ensemble (2K39) (A). A neighbor-joining tree along with a matrix containing the PRIDE scores (upper triangle) 
and the 1-PRIDE distances (lower triangle) are shown. All-against-all PRIDE2 scores for all 116 structures in the same ensemble (6670 com-
parisons) (B) and PRIDE-NMR scores for all 116 members as calculated using the available NOE restraint set for the structure 1D3Z [31] (C) 
In (B) and (C), the average score is represented by a horizontal line. 
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their comparison. PRIDE-NMR is a conceptually related tool 
capable of relating protein structures to NMR-derived dis-
tance restraint sets (see above). Such sets contain hydrogen-
hydrogen distances in the maximal range of 5-6 Å. Both 
PRIDE and PRIDE-NMR are quite fast and can be used as a 
nearest-neighbor classifier when interpreting results of data-
base searches. 

 Here we use these two methods to assess the heterogene-
ity of dynamic protein ensembles. For PRIDE, the Cluster 
option available in the web server can be used to relate en-
semble members to each other. In the case of PRIDE-NMR 
an NMR NOE distance restraint list is searched against a 
'database' consisting of the ensemble members. 

 In accordance with principal component analysis [3]., 
neighbor-joining clustering of PRIDE2 all-against-all scores 
reveals distinct conformer families within the 116-membered 
ensemble. Investigation of the all-against-all PRIDE scores 
shows considerable heterogeneity within the conformers as 
scores as low as 0.5 can be observed, which are generally not 
considered indicative of extensive similarity in a database 
search. Conceptually similar results were obtained with 
PRIDE-NMR where the score depends heavily on the con-
former selected (Fig. 6). Although the average scores are 
acceptably high in both cases, these results underline the 
importance of conformer selection for comparative structure 
analyses such as database searches, where protein structures 
are usually represented by a single conformer. 
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