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ABSTRACT 

Motivation: Tandem mass spectrometry has become a standard 

tool for identifying post-translational modifications (PTMs) of pro-

teins. Algorithmic searches for PTMs from tandem mass spectrum 

data (MS/MS) tend to be hampered by noisy data as well as by a 

combinatorial explosion of search space. This leads to high uncer-

tainty and long search execution times. 

Results: To address this issue we present PTMTreeSearch, a new 

algorithm that uses a large database of known PTMs to identify 

PTMs from MS/MS data. For a given peptide sequence, 

PTMTreeSearch builds a computational tree wherein each path from 

the root to the leaves is labeled with the amino acids of a peptide 

sequence. Branches then represent PTMs. Various empirical tree 

pruning rules have been designed to decrease the search execution 

time by eliminating biologically unlikely solutions. PTMTreeSearch 

first identifies a relatively small set of high confidence PTM types, 

and in a second stage, performs a more exhaustive search on this 

restricted set using relaxed search parameter settings. An analysis 

of experimental data shows that using the same criteria for false 

discovery, PTMTreeSearch annotates more peptides than the cur-

rent state-of-the-art methods and PTM identification algorithms, and 

achieves this at roughly the same execution time. PTMTreeSearch 

is implemented as a plugable scoring function in the X!Tandem 

search engine.  

Availability: The source code of PTMTreeSearch and a demo serv-

er application can be found at http://net.icgeb.org/ptmtreesearch. 

Contacts: pongor@icgeb.org. 

Supplementary information: Supplementary materials are availa-

ble at Bioinformatics online. 

1 INTRODUCTION  

Mass spectrometry is now the de facto method used for protein 

identification in complex biological samples. Subsequent computa-

tional analysis of data from even a single sample may be intense 

and involve the application of a long pipeline of various algorithms 

to reveal protein identification and structure. (For reviews see 

(Aebersold and Mann, 2003; Becker and Bern, 2011; Deutsch, et 

al., 2008; Jacob, 2010; Johnson, et al., 2005; Kertesz-Farkas, et al., 

2012; MacCoss, 2005; McDonald, et al., 2004; Menschaert, et al., 

2010; Nesvizhskii, 2010; Nesvizhskii and Aebersold, 2004; Neu-

mann and Bocker, 2010; Noble and MacCoss, 2012; Webb-

Robertson and Cannon, 2007; Yates, et al., 1995)). Difficulties 

arise when unexpected or missed cleavages, point mutations, and 

post-translational and chemical modifications need to be consid-

ered in the analysis, since the inclusion of these structural features 

of proteins can lead to the combinatorial explosion of the search 

space. This can lead to increases in search execution time, decreas-

es in the significance of hits, and increases in the number of false 

assignments. A solution to this problem involves application of a 

so-called two-round-search (often termed error-tolerant search) 

applied extensively in X!Tandem (Craig and Beavis, 2003; Craig 

and Beavis, 2004; Craig, et al., 2004) and Mascot (Creasy and 

Cottrell, 2002). The first round of this strategy uses ‘clean’ i.e. 

unmodified peptides to identify proteins, and then in a second 

round of analysis, a more exhaustive search is used to identify 

modified peptides. This principle assumes that at least one high 

quality unmodified peptide is present in the sample under analysis. 

Identification of post-translational modifications of proteins 

(PTMs) is an especially difficult task. On average, human proteins 

are thought to carry about three PTMs per molecule (MacCoss, et 

al., 2002). However, less than 1% of the proteins in the Uni-

ProtKB/Swiss-Prot databases are annotated with PTMs (Tharakan, 

et al., 2010), meaning significant variations from this estimate may 

exist. The current list of known PTMs is over 500, and they can be 

found in various lookup tables (PTMDBs, PTM databases). A 

good example is the RESID Database of Protein Modifications 

(Garavelli, 2003).  

A PTM carried on a peptide alters the molecular weight of the 

peptide and the corresponding fragment ions and results in a shift 

within the mass spectrum fragment ion series. We term this shift a 

‘gap’. A PTM search can then be formalized as follows: given a 

theoretical and an experimental spectrum, insert one or more gaps 

into the theoretical spectrum such that it maximizes the number of 

the overlapping peaks or other scoring functions. The main chal-

lenge for the PTM search algorithms is then to find such gaps that 
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can be interpreted as PTMs in the MS/MS data, while keeping the 

execution time and the False Discovery Rate (FDR) (Benjamini 

and Hochberg, 1995) low.  

PTM search algorithms can be categorized into three large 

groups: targeted, untargeted, and de novo PTM search methods 

(for a review see (Ahrne, et al., 2010)). In the case of targeted PTM 

searches, the user/experimenter has to specify the PTMs that may 

be present in the sample as an input parameter to the search pro-

gram and these parameters will then be used to calculate the gaps. 

For instance, X!Tandem (Craig and Beavis, 2004) considers one 

type of PTM per amino acid. However, this results in a combinato-

rial explosion of the search space that increases the execution time 

and often reduces the significance of the hits. For example, a par-

tial (incomplete) modification, such as phosphorylation of serine 

would result in a mass shift of ~+80 Dalton at serine residues and 

would effectively double the number of serine-containing peptides. 

This is because each serine residue would have to be annotated 

with and without the mass shift due to phosphorylation. 

Untargeted PTM searches do not require the user to specify ex-

pected PTMs but instead use heuristic search algorithms to find 

modifications on the basis of a database of known PTMs. RESID 

(Garavelli, 2003) is one such database that can be used in this type 

of search. For instance, the algorithm PILOT_PTM (Prediction via 

Integer Linear Optimization and Tandem Mass Spectrometry) uses 

a binary integer optimization model to find PTMs that best match 

the experimental data under analysis (Baliban, et al., 2010). MODi 

(Kim, et al., 2006) identifies short sequence tags (3-5 amino acid 

long) and fills gaps between tags with amino acids that are 

unmodified or modified by PTMs. PTMSearchPlus (Kertesz, et al., 

2009) uses further information obtained from accurate intact pro-

tein mass to identify PTMs in MS/MS data. 

De novo PTM search algorithms (also called unrestricted PTM 

searches or blind searches) do not use a priori information about 

modifications making it possible to discover novel, previously 

never reported, modifications. In general, a theoretical spectrum of 

a peptide sequence is aligned to an experimental spectrum, allow-

ing placement of one or a few gaps in one way or another. These 

gaps are then reported as putative PTMs. To explain this in more 

detail, let ∆ denote the mass difference between the precursor mass 

of the experimental spectrum and the parent mass of the theoretical 

peptide. Some methods have a restriction on gaps, such as the 

number of the gaps or the sum of the inserted gaps must be equal 

to ∆. MS-Alignment (Tsur, et al., 2005) uses a dynamic program-

ming approach to calculate the best alignment. A similar method 

has been proposed by (Chiyong, et al., 2010), but in this case does 

not take ∆ into account during the alignment calculation. P-Mod 

(Hansen, et al., 2005), PTMap (Chen, et al., 2009), and pMatch 

(Ye, et al., 2010) place ∆ of each amino acid on the theoretical 

peptide and matches it to the experimental spectrum iteratively. In 

a similar manner, TwinPeaks (Havilio and Wool, 2007) and Del-

tAMT (Fu, et al., 2011) calculate the location of the PTM but 

TwinPeaks shifts the theoretical peptide over a wide range and 

derives the PTM mass from the shift providing the highest score. 

DeltAMT meanwhile assumes that both modified and unmodified 

versions of the peptides are present in the sample and looks for 

frequent occurrences of the retention time and parent ion mass 

difference between spectral pairs. High concentration of such pairs 

is assumed to represent modification groups in the sample. 

OpenSea (Searle, et al., 2004), in a similar manner to MODi, iden-

tifies short sequence tags from the spectrum but fills the gaps be-

tween tags without using a PTMDB. SIMS (Liu, et al., 2008) 

meanwhile interprets pairs of product ion peaks, which represent 

potential amino acid residues or intervals, as a means of mapping 

PTMs. The de novo PTM identification algorithms often misplace 

PTMs on the amino acid sequence or require other corrections to 

improve accuracy. PTMClust (Chung, et al., 2011) and PTMFinder 

(Tanner, et al., 2008) have been designed to improve the quality of 

PTM assignments obtained with de novo PTM identification. 

Building a prefix tree from theoretical peptide sequences consti-

tutes a different kind of approach wherein the problem of PTM 

identification is reduced to tree traversal (Kertesz-Farkas, et al., 

2011). For a peptide sequence p1…pn of length n, a prefix tree 

structure can be built wherein the nodes at the ith level of the tree 

are labeled with the amino acid pi and each branch represents dif-

ferent modifications on pi taken from a PTMDB. At each node the 

corresponding theoretical fragment ion masses are calculated and 

matched to the experimental spectrum, providing a score for the 

given node. Leaves that have gathered modifications on the path 

from the root and add up to the parent mass difference are consid-

ered feasible solutions. The problem with this approach is the 

tree’s size: a complete traversal is too time consuming for practical 

application. A greedy traversal heuristic has previously been pro-

posed that traverses only a fraction of the full search space thus 

reducing running times to a manageable level (Kertesz-Farkas, et 

al., 2011). However, greedy algorithms may fail to find the best 

solution and report false annotations. Instead of developing more 

sophisticated tree traversal algorithms for this problem, we decided 

to develop tree-pruning rules to eliminate unlikely modifications 

and reduce the search space.  

In this paper we present a novel method, called PTMTreeSearch, 

which is designed to identify modifications in experimental spectra 

using a PTMDB. PTMTreeSearch is executed in two rounds. Us-

ing strict tree-pruning rules, the first round of search is aimed at 

identifying a restricted set of PTM types with high confidence. The 

second round uses this restricted set of PTM types but runs with 

relaxed tree-pruning rules so as to identify more modified spectra. 

To the best of our knowledge, this method is the first that applies a 

two-stage search approach to PTM identification. This idea is 

analogous to the two round peptide identification strategy used by 

X!Tandem and Mascot, where the first round is used to reduce the 

search space to likely solutions followed by an error-tolerant, more 

exhaustive search in the second round. 

The rest of this paper is structured as follows: section 2 presents 

the PTMTreeSearch algorithm along with the tree pruning tech-

niques applied; section 3 describes the datasets and methods used 

and section 4 presents and discusses the results. Finally, section 5 

concludes our findings and outlines further work. 

2 METHODS 

Let La be a list of modification masses (measured in Daltons) for the amino 

acid a and na=|La| denote the number of the elements in the list. 0.0 Da is 

always included and represents no modification. A modification mass is the 

mass difference that the amino acid gains or loses due to the molecular 

modification. For example Lc=/0.0, -17.0265, 47.9847, 57.0215, 71.0371, 

…/ means the amino acid cysteine can be 1) unmodified, 2) can lose 

17.0265 Da (via losing ammonia from cysteine), 3) can gain 47.9847 Da 

(via complete oxidation), 4) can gain 57.0215 Da (via carbamidomethyla-
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tion), and 5) can gain 71.0371 Da (via propionamide) and so on. The mo-

lecular mass of cysteine is 121.16 Da and becomes 178.1815 Da after car-

bamidomethylation. Note that one particular amino acid molecule is not 

modified with more than one modification at the same time, but an amino 

acid can be modified with various modifications at different occurrences in 

the peptide sequence (and in different peptides as well). 

Let q be an experimental spectrum represented as a list of location-

intensity peak pairs, p=a1a2…an be a peptide sequence, PM(q) and PM(p) 

denote the precursor mass of q and p respectively, and ∆ = PM(q)-PM(p). 

The basic idea is to generate the theoretical fragment ion peaks for all mod-

ified variations of peptide p and store them in a prefix tree, where a branch 

at the level i denotes a PTM on amino acid ai. A tree node at the level i 

contains a structure v=〈s,b,y,m,c〉, where s is a score that quantifies the 

comparison of the peptide part a1…ai to the experimental spectrum. Then c 

is the number and m is the sum of the mass of the acquired modifications in 

the sequence a1…ai. The variables b and y store the masses (m/z) of the b- 

and y- fragment ions that correspond to the (a1…ai)+m and (ai+1…an)+∆-m 

fragment ions respectively. 

Now we recursively define the tree and the values stored in the node 

structures as follows: the root node is 〈0,0,PM(q), 0, 0〉 at level 0. If v = 

〈s,b,y,m,c〉 is a node in the tree at the level i (0 ≤ i < n), then the node 

vj=〈s+h,b+mai+1+mj,y-mai+1-mj,m+mj,c’〉 is a child of the node v at level i+1, 

where  

• mai+1 is the mass of the amino acid ai+1,  

• mj is the jth modification in the list Lai+1,  

• h is the sum of the intensities of the experimental peaks that matches 

to the theoretical peaks b+mai+1+mj and y-mai+1-mj within the small ion 

match tolerance, 

• c’ = c+1 if mj ≠ 0, otherwise c’=c (that is c’ counts the PTMs on the 

a1…ai+1 fragment). 

The node vj at level i+1 represents that the amino acid ai+1 in the peptide 

p is modified with the jth modification from Lai+1. If v is a node at level n 

then v is a leaf node. A leaf l = 〈s,b,y,m,c〉 is called a feasible solution if ∆ = 

m (up to a small precursor mass tolerance); that is the mass of the peptide 

with the acquired modification masses is equal to the precursor mass of the 

query spectrum. Note that h can be calculated in an efficient way by storing 

the peaks of the experimental spectrum in an ordered list ordered by the 

peaks’ m/z locations. 

 

Figure 1. Illustration of a computational tree representation of the search 

space of the peptide MQLSQL, where the amino acid M can be oxidized, Q 

can carry 0.98 and +31.9898 modifications, and where the curly bracket 

shows the structure of a node. Each path from the root to the leaf represents 

a modified peptide and each branch represents an insertion of a modifica-

tion to the peptide. 

The score of the spectrum q and peptide p comparison is the maximum 

score of the feasible solutions, if there is any, otherwise null is returned. 

This goal can be found with any kind of tree traversal method - depth-first 

traversal algorithms are a good example in this case. The modifications on 

the peptide can then be extracted from the path between the root and the 

best goal leaf. 

Note that all nodes at level i correspond to the ith amino acids in peptide 

p, and all have the same nai number of children. Hence, the tree is balanced 

and all leaves have the same depth. This gives the size of the search space: 

which makes the time complexity of the traversal algorithm impractical. 

Note also that the size of the search space does not depend on the experi-

mental spectrum. In the next subsection we define pruning techniques in 

order to maintain the run time polynomial and make it appropriate for real 

applications. An example computational tree is given in Figure 1. 

2.1 Search space reduction via tree pruning  

In theory, for a peptide of 10 residues each modifiable by three modifica-

tions, the search space will be a tree consisting of around four million 

nodes. Checking all these nodes means a complete traversal of the tree 

would require prohibitively long calculations for practical applications. 

However, we can define simple rules for eliminating potential modifica-

tions and/or combinations that are unlikely to occur. This is a rule-based 

reduction of the search space, which corresponds to the pruning of the tree. 

Namely, if a rule is not fulfilled at a certain node, a sub-tree beyond the 

node in question is eliminated, and, as a result, tree traversal will become 

faster. We use the following rules: 

A) Limiting the number of modifications. Let MB be a user-defined 

upper bound on the number of modifications allowed on any peptide. The 

algorithm eliminates the node v=〈s,b,y,m,c〉 along with the corresponding 

sub-tree from the search space if c>MB. We noticed that applying a large 

MB value (say 5) leads to a disproportionally large number of erroneous 

annotations in short peptides (data not shown). This bias can be removed 

by applying a length-dependent upper bound, MB’ = min(MB, n/3), where 

n is the length of the peptide in question. 

B) Excluding adjacent, compensatory modifications. In the database of 

modifications there are 102 pairs in which the mass change is identical but 

of adverse sign. We term these “pairs-compensatory” modifications. For 

instance, hydroxylation of lysine to hydroxyl-lysine leads to a mass gain of 

15.9994 Da, while reduction of serine to alanine (or threonine to α-

aminobutyrate) leads to a mass loss of 15.9994 Da. The algorithm would 

automatically allow these pairs to be included since the overall mass of the 

peptide would not change. Currently we disallow such compensatory modi-

fications if they are adjacent (but are not necessarily on two subsequent 

amino acids). If the sum of the peak shifts caused by two adjacent PTMs is 

0 within a certain tolerance, the node and the respective sub-tree will be 

pruned from the tree. 

C) Excluding non-productive modifications (NPM). In the first approx-

imation, a PTM is accepted if adding its mass shift to the corresponding 

theoretical peaks (type b- and its complementary peak of type y-) will cause 

the modified peak to match with one peak of the experimental spectrum. 

Formally, the node vj=〈s’,b’,y’,m’,c’〉 is to be deleted if c’>c and s=s’ with 

respect to its parent node v=〈s,b,y,m,c〉. 

D) Setting a threshold on matching intensities (SR). In practice, an ex-

perimental-theoretical spectrum comparison can be considered acceptable 

if the total intensity of the matching peaks exceeds a certain threshold. The 

algorithm applies such a threshold and prunes a node when the score of the 

current node plus a predicted score for the path from the current node to 

leaves does not exceed a certain value. Formally, let S be the sum of the 

intensity of the d most intense experimental peaks, where d is the number 

of the theoretical peaks of the peptide and let SR be a user-defined thresh-

old (0<SR<1). The node v=〈s,b,y,m,c〉 at level i is to be eliminated if 

(s/S+(n-i)/n) < SR.  Score estimation for a path connecting a node to a leaf 

is a widely used technique in A*-algorithms (Hart, et al., 1968). 

E) Equilibrated matching frequencies (MPE). We define matching fre-

quency as the number of theoretical peaks matching with the experimental 
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peaks divided by the total number of the theoretical peaks. By prescribing 

equilibrated matching frequencies, we require that the matching frequency 

of fragments carrying 0, 1, 2 … PTMs, respectively, should be roughly the 

same. For instance, if a peptide has 10 unmodified fragments, 20 fragments 

carrying one PTM and 10 fragments carrying two PTMs, we expect that the 

ratio of matching peaks should be roughly the same, say 40%, in all three 

groups. For quantifying the evenness of the distribution we define the MPE 

score (Modified Peptide Entropy), which is based on the formula of Shan-

non entropy (see Supplementary Materials S1 for the formal definition). 

MPE is 1.0 when the modified fragment ions match to experimental peaks 

evenly, while MPE is 0.0 when only one type of (modified or non-

modified) fragment matches. We note that MPE does not take into account 

the number of the matching peaks and it can give 1.0 as a value for poor 

but evenly matching frequencies (such as those that occur in random spec-

trum-peptide comparisons). Hence, MPE does not substitute the usual 

scoring function but rather complements it. A high MPE score is a neces-

sary but not sufficient condition for identifying modified peptides. This rule 

is applied on feasible solutions (leaves) - i.e. it filters solutions but not tree 

nodes. Hence application of this rule does not speed up the calculations, but 

improves accuracy by eliminating ambiguous annotations.  

PTMTreeSearch builds, explores and applies the pruning rules simulta-

neously, i.e. it does not build a full tree before pruning it. PTMTreeSearch 

builds the tree recursively, starting from the root node and applies the tree 

pruning rules in each newly created node. In addition, tree traversal follows 

a depth-first search strategy, meaning that only the path from the root to the 

current node is kept in memory. As a consequence, the RAM requirement 

of PTMTreeSearch is low. We note that rules defined here can be applied 

independently from each other. Supplementary data section S3 shows a 

flowchart and a pseudo code of the algorithm. 

2.2 Two-Stage searching 

Pruning parameters (MB, NPM, SR, MPE) determine the size of the search 

space. Strict parameter settings (small MB, NPM, high SR, and high MPE) 

allow identification of high confidence PTMs in good quality spectra in 

relatively short times. Conversely, loose parameter settings (high MB, 

without NPM, low SR, and low MPE), allow the analysis of a larger search 

space and give rise to a larger set of PTMs at the expense of running time. 

In order to keep the benefits of both strategies, PTMTreeSearch is imple-

mented in a two-round fashion. The first round uses strict parameter set-

tings and serves to identify a smaller set of likely PTM types, while looser 

parameter settings applied in the second round identify all possible occur-

rences of this restricted set of PTM types. This approach is based on the 

assumption that each modification type present in a sample has to be found 

in at least one good quality spectrum. This idea builds on the two step 

database search principle used by programs such as X!Tandem and Mascot. 

2.3 Implementation, availability, and remarks. 

PTMTreeSearch is written in C++ using MPICH (Message Passing Inter-

face) parallelization technology. It is implemented as a pluggable scoring 

function (MacLean, et al., 2006) within the X!!Tandem search engine 

(Bjornson, et al., 2008), which is a parallel version of the X!Tandem pro-

gram. PTMTreeSearch consists of two main classes. One class is called 

PTMTreeSearchScore. It derives from the class mscore_tandem 

and it implements the PTMTreeSearch method. The other class is called 

PTMTreeSearch. It derives from the mrefine class and initializes the 

variables, loads the modifications, launches the spectrum-peptide compari-

sons using PTMTreeSearchScore, and collects the modifications found. 

The PTMTreeSearch class carries out the two-stage searching. The source 

code of PTMTreeSearch along with an installation guide and the parameter 

specifications can be found at http://net.icgeb.org/ptmtreesearch/doc. For 

demonstration purposes we developed a web server that contains the 

X!!Tandem search engine with PTMTreeSearch included 

(http://net.icgeb.org/ptmtreesearch). We note that X!Tandem uses a binning 

technique for peak representation, while in contrast PTMTreeSearch uses 

the exact measured location of the peaks and the accurate mass of the mod-

ifications. The latter was chosen because it provides a higher accuracy than 

a binning approach. Figure 2 shows PTMTreeSearch within the X!Tandem 

pipeline. 

X!!Tandem implements reading of the input experimental spectra, filters 

and manages the results, and outputs it in a standard manner. From 

X!Tandem, as it is specified in the input parameter file, PTMTreeSearch 

obtains the parameter settings, such as the tolerance parameters, fragment 

ions to score (a-, b-, c-, x-, y- ,z- ions), and considers partial, missed cleav-

age and multiply-charged precursor ions. Fixed modifications defined in 

X!Tandem are not included up to the allowed PTM limit MB. 

 

 

Figure 2. The spectrum identification pipeline of the X!Tandem including 

PTMTreeSearch. 

2.4 Methods and datasets  

2.4.1. Collections of known PTMs. We collected different types of PTMs 

from four public sources: A) OMSSA  (http://www.ncbi.nlm.nih.gov/ 

IEB/ToolBox/CPP_DOC/lxr/source/src/algo/ms/omssa/mods.xml) (Geer, et 

al., 2004), B) Unimod (http://www.unimod.org/downloads.html), C) Uni-

prot http://www.uniprot.org/docs/ptmlist, and D) ResId (ftp://ftp. 
ebi.ac.uk/pub/databases/RESID/) (Garavelli, 2003). The data were 

downloaded 10th October 2011. We compiled a unique list of amino acid 

modifications, which resulted in 524 modification types. 
2.4.2. Spectrum datasets used for testing. The Aurum dataset is a publicly 

available dataset that contains 9832 singly charged spectra generated on an 

ABI 4700 MALDI TOF/TOF instrument from 246 purified and trypsin-

digested protein samples. This dataset was explicitly designed for testing 

novel MS/MS algorithms and tools (Falkner, et al., 2007). The data were 

downloaded from ProteomeCommons.org Tranche network via the follow-

ing hash: HnxUzQuuP7BIqF10aetLtjwnffOwuOM-AfDvg2BFmenNe9Ue 

MgprBFh7+wtpbcWnXqMk2KY-8z9VjmwqXYDbQ0pTNqIx4AAAAAA 

SJlaw= =. HSPP2A is a dataset containing 29583 spectra (20773 doubly- 

and 8706 triply-, 474 quadruply-, 26 quintuply-, and 4 hexuply-charged 

spectra) and was obtained with an LTQ mass spectrometer. The data were 

obtained from trypsin digested proteins of the human protein phosphatase 

2A system (Glatter, et al., 2009) and downloaded from www.peptideatlas. 

org/repository/publications/Glatter2008. The Universal Proteomics Stand-

ard I (Sigma) dataset (UPS1) contains 3368 singly-charged spectra ob-

tained from 50 trypsin-digested proteins using an Applied Biosystems 4800 

MALDI TOF/TOF instrument (Bish, et al., 2008). The data were obtained 

from the authors.  

2.4.3. Protein sequences. Computational identification of PTMs requires a 

collection of protein sequences, which are selected by the experimenter, 

and will be dependent on the goal of the experiment. In order to compare 

various algorithms on an equal footing, we compiled uniform collections of 

protein sequences that were then used with each PTM finder program used 

in this work. Each spectral dataset was submitted to the X!Tandem program 

using the IPI.Human v3.81 protein sequence dataset (Kersey, et al., 2004), 

and the proteins that passed to the 2nd round were collected in separate 

FASTA files (Jeong, et al., 2012). For statistical analysis, we constructed 

decoy datasets (Elias and Gygi, 2007) from reversed sequences (Moore, et 

al., 2002). The target and reverse datasets were unified in concatenated 

FASTA files before use by various programs. Supplementary data Section 

S8 shows a summary of the datasets and the corresponding parameters 

used. 

2.4.4. Performance evaluation ROC. The performance was evaluated using 

the Receiver Operator Characteristic (ROC) curve technique (Green and 
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Swets, 1966; Sonego, et al., 2008). Annotated spectra were ranked accord-

ing to a matching score. Spectra annotated with target peptide sequences 

were then plotted as a function of the number of spectra annotated with a 

decoy peptide sequence by varying a threshold over the ranking variable 

range. This plot gives a monotonously increasing curve, the ROC curve. A 

higher running ROC curve indicates better performance. FDR. The False 

Discovery Rate (FDR) was calculated as the ratio of the number of the 

decoy hits over the number of positive hits at a certain threshold t using the 

following formula (Kall, et al., 2007): 

)(target#

)(decoy#
)(FDR

t

t
t = . 

The ROC plot can also be used to compare methods at the level of the same 

FDR. For instance, FDR=1% is a straight line in the ROC plot, and the 

intersections with the ROC curves indicate the number of target and decoy 

peptides found at the same level of FDR. The FDR=100% would coincide 

with the diagonal x=y line. 

2.4.5. PTM finding programs InsPecT (version 2012.01.09 (Tsur, et al., 

2005)) was downloaded from the project website 

(http://proteomics.ucsd.edu/Software/Inspect.html) and installed on Linux. 

Inspect was running in ‘unrestrictive’ mode in order to find modifications 

in a de novo way. No fixed or partial modifications were included as pa-

rameters. The parameter MaxPTMSize was set to 200 Da. The results files 

were then post-processed by ComputeFDR.jar script (part of Inspect) and 

the field InspectFDR was used as a ranking variable for the ROC analysis.  

MODi v3.01 (Kim, et al., 2006) was run remotely at the web server availa-

ble at http://prix.hanyang.ac.kr/modi/search.jsp. The runs were performed 

without fixed modifications and by allowing all 615 variable modifications 

present in the database of MODi. The modification range was set to -50 Da 

– +200 Da. The ROC analysis was carried out using the ‘Probability’ field 

as ranking parameter. SIMS (Liu, et al., 2008) was obtained from the au-

thors. SIMS was used with the ‘FULL_TRYPTIC FALSE’ parameter set-

ting and the modification range was set to 0 – 200 Da. No fixed or variable 

modifications were used. X!Tandem version 10-12-01 (Craig and Beavis, 

2004) was downloaded from www.thegpm.org. For the experimental calcu-

lations only, the source code of X!Tandem was slightly altered such that it 

uses the complete restricted protein sequences in the second round in order 

to allow FDR and ROC calculations based on target/decoy comparisons. 

The LogE values taken from the X!Tandem output file were used for FDR 

and ROC calculations. 

2.4.6. Computational environment All programs (except MODi, which was 

run on a web server) were executed on a Linux cluster consisting of one 

frontend and 20 backend nodes, each equipped with 2.2Ghz CPU and 2GB 

memory. The execution time was calculated as if the experiments were run 

on a single CPU computer in order to make the execution time comparable 

with other methods. 

3 RESULTS AND DISCUSSIONS 

3.1 Comparison of tree pruning strategies 

PTMTreeSearch has three parameters (MB, SR, NPM) that con-

trol the size of the search space. In this section we investigate their 

impact on accuracy and execution time. First, we fixed MB=1 and 

MPE=0.0, and we defined six search strategies (Table 1) for the 

SR and NPM, in which the size of the search space gradually de-

creases from complete search (no tree pruning) to restricted search 

(strict tree pruning).These search strategies were applied to the 

three spectrum datasets and the identified peptides (spectra that are 

assigned to a peptide sequence), the modified peptides (peptides 

that carry at least one modification) and the modification types (a 

modification from the PTMDB, such as carbamidomethylation of 

cysteine or oxidation of methionine) were counted at the level of 

1% FDR. Note that the number of identified peptides includes both 

modified and unmodified peptides. The exact numbers can be 

found in the supplementary materials Table S3, Section S4. On 

each dataset the relative increase or decrease in speed, compared to 

the full search (Search Strategy 1) were calculated, and averaged 

over the three spectrum datasets. These are illustrated in Figure 3. 

As expected, stricter pruning rules reduced the execution time 

(PTMTreeSearch became 3-4 times faster) however they also re-

duce the number of the identified modification types and annotated 

modified peptides. We have evaluated the six search strategies 

using MB=2, and the results are presented in the supplementary 

materials Table S4, Figure S8 in Section S4. These results show 

that larger search space can result in higher execution times and 

fewer annotations at FDR=1%. When tree-pruning rules are ap-

plied, the execution time decreases significantly and the number of 

annotated peptides increases. In order to further improve the per-

formance we decided to implement a two-stage search process. 

Table 1. Search Strategy (SS) names and definitions. 

SS Name Full NPM SR2 SR4 SR6 SR8 

NPM no yes yes yes yes yes 

SR 0 0 0.2 0.4 0.6 0.8 
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Figure 3. The effect of tree pruning on execution times and the number of 

assignments (peptides, modified peptides, modification types). The abbre-

viations of the tree pruning strategies are explained in the text. The data 

were normalized by taking the number of assignments and the running time 

values of the full database search as 100 %, and then the data obtained on 

the three datasets (Aurum, UPS1, HSPP2A) were averaged. Two-stage 

search  

3.2 Two-stage search 

In the first stage of this strategy, strict tree pruning rules are used 

to identify trusted modification types from PTMDB. The modifica-

tion types found in the first stage are filtered according to the MPE 

criterion as described in Supplementary Materials Section S1 and 

S2. A more exhaustive search is then performed in the second 

round, using this relatively small set of trusted modification types 

in conjunction with more relaxed tree pruning rules. In practice we 

used MB=1, with NPM, SR=0.4, and MPE=0.99 as the parameter 

settings for the first round. The impact of the MPE on the number 

of the modification types and on the results can be found in the 

supplementary materials (Section S2). A comparison of 

PTMTreeSearch with MPi Preview v1.0 is shown in Supplemen-

tary Section S6. For the second stage, we used the following pa-
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rameter settings: SR=0.3, without NPM, and MPE=0.00, with var-

ious values (between 1 and 5) for MB. The number of allowed 

modifications, MB, is a critically important parameter since it reg-

ulates the search space size in all PTM finding algorithms. Untar-

geted PTM finders used in practice frequently produce prohibitive-

ly long running times if more than two or three modifications are 

allowed, while de novo PTM finders usually allow one modifica-

tion per peptide. The effect of MB on the performance of 

PTMTreeSearch is shown in Figure 4. Data used for the figure can 

be found in the Section S5 in the supplementary materials. In these 

experiments, MB was varied only in the second round of the 

search. The data show that allowing more modifications dramati-

cally increases the running time of PTMTreeSearch. Allowing four 

to seven modifications increases the running times by 10 to 50 

times, respectively. It is also apparent that allowing more than 

three or four modifications does not improve the number of correct 

assignments. The change in correct assignments is simply due to 

the fact that the combinations of more modifications can easily 

produce random matches which will then impair the significance 

of the hits. Therefore an optimal settings for the two stage search 

process we propose are MB=1, using NPM, SR=0.4, MPE=0.99, 

for the first round and SR = 0.3, MPE = 0.0, without NMP, and 

MB=1,2,3. The Section S5 in the supplementary materials presents 

results with various parameter settings. 
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Figure 4. The effect of allowed modifications on the number of assign-

ments (number of identified peptides, modified peptides) in the two-stage 

search. The general parameter settings were (MB=1, with NPM, SR=0.4, 

MPE=0.99) for the first and (SR=0.3, without NPM, MPE=0.0) with 

MB=1,…,5 for the second stage, respectively. MB was varied in round 2 

only. The data were normalized by taking the number of assignments and 

the running time values of the full database search as 100%, and then the 

data obtained on the three datasets were averaged.  

3.3 Comparison of PTMTreeSearch with other state-

of-the-art methods  

The performance of the optimized two-stage PTMTreeSearch was 

compared to InsPecT, MODi and SIMS using the ROC analysis 

and shown in Figure 6. At any given FDR, PTMTreeSearch identi-

fies more peptides and misses relatively fewer than the other meth-

ods. Figure 5 shows that PTMTreeSearch identifies 73% more and 

misses 13% less peptides on average in comparison to the other 

methods at FDR=1%. For a detailed comparison and execution 

times see Supplementary Tables 12 and 13, respectively. Supple-

mentary excel table 3 presents a summary about known modifica-

tion types found in UPS1 data set. If one PTM is allowed, the run-

ning time of PTMTreeSearch compares quite favorably to those of 

the other programs. If we allow more modifications, 

PTMTreeSearch becomes slower. For these cases we cannot com-

pare the accuracies since InsPecT and SIMS allow only one modi-

fication per peptide. 

We also evaluated PTMTreeSearch on the PTM benchmarking 

dataset of The Proteome Informatics Research Group (iPRG) of 

the Association of Biomolecular Resource Facilities (ABRF), 

which was designed for a programming contest in 2012 

(http://www.abrf.org/index.cfm/group.show/ProteomicsInformatics

ResearchGroup.53.htm#R_4). This spectrum dataset has been 

spiked with 69 additional synthetic peptides, with modified 

phosphorylation, methylation, acetylation, nitro, sulfation, etc. We 

compared PTMSearch with the two best anonymous contest 

participants, 71755v and EK93128i, as well as Inspect, SIMs, and 

MODi. Supplementary Figure S12 shows that PTMTreeSearch 

identifies 35% more peptides than the two best submissions, 

compared at FDR=1%.  

Supplementary Excel Table 1 summarizes the modification 

types found in this dataset. Supplementary Excel Table 2 shows a 

separate list of hits found on the 69 spiked modified peptides. In 

this comparison PTMTreeSearch was also one of the best 

performers, although this, depended on the number of 

modifications allowed (See Supplementary Materials Section S8 

for further details). 

We have compared the current version of the PTMTreeSearch to 

its previous version (Kertesz-Farkas, et al., 2011). In the earlier 

version, the full search space was traversed using a greedy algo-

rithm allowing for backtracking with a limited size priority double-

ended queue. On average, on our datasets, the greedy approach 

identifies 36% more modification types, but 5% fewer peptides, 

18% fewer modified peptides and takes three and half times longer 

than the current version of PTMTreeSearch. Data are shown in the 

Section S7 in Supplementary materials. The time increase is due to 

the priority queue operations, which are logarithmic in time. The 

current version of PTMTreeSearch using tree-pruning rules and a 

two-round search strategy provided more assignments in shorter 

running times. 
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Figure 5. Pairwise comparison of results obtained with PTMTreeSearch to 

the state-of-the-art methods. The grey bar denotes the number of the spectra 

annotated with other program (indicated on the top of the bar). The white 

bar denotes the number of the spectrum annotated with both the 

PTMTreeSearch and the other program. The black bar denotes the number 

of the spectrum annotated only with PTMTreeSearch program.  
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Figure 6. ROC comparisons of the PTMTreeSearch to the state-of-the-art methods. The intersection of the ROC curve and the straight line indicates the 

number of target and decoy peptides annotated at 1% FDR. 

4 CONCLUSIONS 

In this paper, we have presented a novel algorithm called 

PTMTreeSearch for identification of Post-Translational Modifica-

tion (PTM) in tandem mass spectrometry data using a large collec-

tion of known amino acid modifications. The method employs a 

prefix tree for search space representation where branches repre-

sent PTMs and tree pruning techniques are used to eliminate un-

likely solutions and to reduce the execution time. Moreover, it uses 

a two-stage search, where a small set of trusted modification types 

are identified in the first round, and this restricted set of modifica-

tion types is used in the second round to identify PTMs in an ex-

haustive manner. 

We believe PTMTreeSearch and the state-of-the-art methods 

(such as Inspect, SIMS, MODi) are able to find the PTMs in a 

complex biological sample. The question remains whether modifi-

cations are identified with high confidence or if the modified pep-

tide annotation vanishes among the decoy matches. In our opinion 

the computational tree provides a natural way to represent the 

search space for finding modifications and avoiding redundant 

calculations. The tree pruning techniques and the two-stage search 

provide more accurate modification identification at a reasonable 

time cost, and identifies more peptides than current state-of-the art 

PTM finder algorithms at the same FDR level. 

We implemented PTMTreeSearch as a plug-in of the X!Tandem 

framework, and hence PTMTreeSearch is fully compatible with all 

data and output formats of X!Tandem. In addition, 

PTMTreeSearch fixes one drawback of X!Tandem - namely, that 

X!Tandem cannot detect different modifications on the same type 

of amino acid (not on the same side-chain). For example, with 

PTMTreeSearch it becomes possible to search for multiple modifi-

cations of cysteine without multiple searches.  Simply put, if the 

corresponding modifications are part of the user-defined PTMDB, 

PTMTreeSearch will consider them in various combinations on the 

peptide sequences at the same time. Finally we note that 

PTMTreeSearch interprets peak shifts using known PTMs, so it 

cannot identify PTMs that neither induce peak shifts nor alter the 

type of the product ions.  
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