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The primary visual cortex (V1) of the mammalian brain is equipped with a specifi cally connected 
network of neurons that can potentially solve diffi cult image processing tasks. These neurons are se-
lectively tuned for locations in visual space and also for line orientation. The coupling of location and 
orientation tuning results in the neural representation of the visual world in terms of local features. 
These local features, e.g., oriented line segments, will have to be linked together in order to parse the 
visual world into regions corresponding to object and ground. Although standard models of V1 do not 
address the issue of interacting neuronal populations, we suggest that the long-range connectivity pat-
tern of V1 provides an architecture where spreading neural activity may lead to pertinent fi gure-ground 
segmentation. The model relies on the fact that in addition to the processing units, their connections 
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are also selectively tuned for space and orientation. From the computational point of view, the model 
uses a minimalist approach that applies the fundamental concepts of Gestalt psychology – proximity, 
similarity and continuity – to the spreading of neuronal activation signals. This model is successful in 
predicting psychophysical performance of human observers, and provides an account of the computa-
tional power of V1.

Keywords: primary visual cortex, minimalistic model, contour integration

INTRODUCTION

Among the many unsolved issues of visual information processing, the issue of segmentation 
is among the thorniest ones (Figure 1). Ambiguities arise because the local feature detectors, 
working in terms of local rules of grouping, are not able to take into consideration the global 
properties of an image. A certain local, neighbor-to-neighbor connection might be reasonable 
in local terms, however, it might not work in terms the global composition of the image. 
These ambiguities would lead to bi- and multi-stable image interpretations, however, the 
human visual system seems to cope with the most ambiguous situations. Although computer 

Figure 1. The cortical puzzle. According to the “standard” view of low-level visual processing, simple 
cells in the primary visual cortex compute a linearly weighted sum of the input over space and time 
with a Gabor-like function, followed by response normalization. The second panel shows the most 
activated hypothetical fi lters for each location within the image. The local fi lter bank, however, only 
provides locally interpretable results, and the pieces will need to be linked together. There is an inher-
ent ambiguity in grouping local elements, as the insets show. Which one is a good connection – 1 or 
2? The central object will be well segmented by choosing 1, however, 2 would be a very bad choice, 
connecting the boundaries of two independent objects. Beyond the “standard” view, it is assumed 
that neural interactions within the primary visual cortex connect the local fi lters in an orientation- and 
position-selective (e.g., similar-to-similar orientations, and along smooth curves) facilitatory manner, 

providing a basic tool for solving the puzzle illustrated here.
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vision systems still cannot match the capabilities of the human visual system in parsing a 
visual image into regions corresponding to object and ground, building upon the known 
long-range connectivity pattern of the visual cortex, we demonstrate that spreading activity 
in a simplifi ed neural network may lead to pertinent bottom-up segmentation and noise elim-
ination when both the processing units and their connections are selectively tuned for space 
and orientation. We model spreading activity as a fi nite Markov chain with the transition 
matrix based on the weighted link structure. The uniqueness of this approach is that while the 
model only specifi es local information (such as edge orientation; proximity and co-linearity 
of neighboring edge segments; or local smoothness of curves) global properties, such as 
contour closure and segmentation emerge.

According to the “standard” view of visual processing, retinal input is conveyed through 
several parallel pathways to the brain in a compressed edition, emphasizing edge information 
at a number of spatial scales. A fundamental step is carried out by cortical area 17 (V1, or 
primary visual cortex) that is assumed to extract a set of features. It has been known for over 
40 years that the shape and layout of neuronal receptive fi elds in V1 furnish the cells with 
selectivity for oriented line segments, and receptive fi eld size determines the spatial scale of 
orientation information (Hubel & Wiesel, 1959). The primary visual cortex thus provides 
a neural description of oriented edge primitives and their locations at a number of spatial 
scales. This can be viewed as an enormous puzzle containing countless pieces to be put to-
gether into fi gure and ground (Figure 1). Beyond the scope of the “standard” view, a possible 
candidate for assembling local information already within the primary visual cortex is the 
plexus of long-range horizontal axonal connections (Gilbert, 1992; Gilbert & Wiesel, 1989; 
Rockland & Lund, 1983; Rockland, Lund, & Humphrey, 1982) that connect neurons re-
sponding to different spatial positions, however, with similar tuning properties. The intrinsic 
(within cortical area V1) intralaminar (horizontal) connections start off primarily from layer 
2/3 pyramidal cells with a 2–5 mm extension parallel to the cortical surface, and terminate in 
a patchy manner with excitatory synapses (Gilbert & Wiesel, 1989; Rockland et al., 1982). 
A high level of selectivity, in terms of for example, local orientations, is behind the gener-
ally observed patchy nature of horizontal connections. The clustered projections have been 
shown to connect neuronal populations with similar orientation preference (Angelucci et al., 
2002; Bosking, Crowley, & Fitzpatrick, 2002; Bosking, Zhang, Schofi eld, & Fitzpatrick, 
1997; Gilbert & Wiesel, 1989; Kisvarday & Eysel, 1992; Stettler, Das, Bennett, & Gilbert, 
2002), with an estimated bandwidth of about 60 degrees (Stettler et al., 2002). The neural 
representation of visual space in V1 is known to be retinotopic. However, the relationship be-
tween the retinotopic map, and the orientation selectivity of long-range intrinsic connections 
has only been addressed by a single study, that of Bosking et al. (Bosking et al., 1997). Here 
it was demonstrated that there is an orientation-specifi c visuotopic anisotropy, indicating 
that the connections prefer neurons that are both co-oriented and co-axial, but also allow for 
connections lacking the latter.

In order to test the computational power of neurons with conjoint orientation preference in 
the primary visual cortex, a behavioral paradigm has been developed, involving a contour-in-
noise stimulus (Kovacs & Julesz, 1993). The contour integration (CI) stimulus is composed 
of randomly positioned local orientation signals (Gabor patches) that are optimal stimuli for 
V1 orientation-tuned neurons, and a set of these Gabor signals are arranged along a contin-
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uous contour path with various shape properties (see Figure 3; a similar paradigm, although 
not allowing for variations in shape, was developed in parallel by Field and his associates 
(Field, Hayes, & Hess, 1993). In addition to the constraints in the design that particularly 
make it suitable for studies on low-level cortical long-range connectivity, neural correlates 
indicate the relevance of low-level visual areas in the detection of the contour-in-noise stimu-
lus.. Such correlates involve the correspondence between neuronal and behavioral responses 
in monkeys (W. Li, Piech, & Gilbert, 2008), direct architectural data in monkeys (Stettler 
et al., 2002), optical imaging of contextual interactions in monkeys (Kinoshita, Gilbert, & 
Das, 2009), human neuropsychology (Giersch, Humphreys, Boucart, & Kovacs, 2000) and 
human fMRI studies (Altmann, Bulthoff, & Kourtzi, 2003; Kourtzi, Tolias, Altmann, Au-
gath, & Logothetis, 2003). Based on these studies, the possible candidate for assembling 
local orientation information in CI is the plexus of long-range horizontal connections in V1. 
The presence of global, shape-dependent contextual processes in CI have been demonstrated 
(Kovacs, 1996; Kovacs & Julesz, 1993, 1994; W. Li & Gilbert, 2002; Mathes & Fahle, 2007), 
indicating that long-range connectivity might contribute to object related processing in V1 
well beyond local feature analysis.

Computational models may help to clarify the potential processing capacity of the selec-
tively tuned intrinsic long-range connectivity pattern of V1 with respect to image segmenta-
tion. There have been a variety of attempts to model this network, either relying on realistic 
neuronal properties (Z. Li, 1998, 2005; Yen & Finkel, 1998), or, at a more abstract level, 
concentrating on contour integration (August & Zucker, 2003; Mumford, 1993; Williams & 
Jacobs, 1997). In simplifi ed modeling accounts, a generally accepted view exists – based on 
the suggestions of David J. Field (Field et al., 1993) and William H. Bosking (Bosking et 
al., 1997) and their associates – that the “association fi eld” of local orientation detectors is 
anisotropic for space, and long-range facilitatory connections are always co-axial. However, 
although the actual anatomical data indicate co-axial connectivity, other types of connections 
are not excluded, given that they are orientation selective – see for example (Bosking et al., 
1997; Stettler et al., 2002). We argue that the orderly architecture of V1 allows for a coupled 
representation of space and orientation where co-axial and non-co-axial connections may 
have different weights.

Our purpose here is to put the known properties of V1 long-range connectivity to a test, 
and shed light on their computational capacity. The abstract model described here aims at 
reproducing only the main features of this network: local orientation measurements, orienta-
tion- and distance selective connections, and spreading neural activity. We use a Markovian 
model which has been suggested earlier to model interactions of this sort, where the state of 
each unit depends on the state of neighboring units and not on the state of all units (August & 
Zucker, 2003; Mumford, 1993; Williams & Jacobs, 1997). Our assumption is that the image 
emerging in V1 corresponds to the convergence point of a Markovian system. Test images 
are the same contour-in-noise images that were used in the psychophysical experiments, in-
cluding both closed and open contours (Kovacs & Julesz, 1993). The chain of interactions in 
the model network converges very fast to a segmented image, and the effi ciency of segmen-
tation with closed versus open contours resembles that of the human performance (Kovacs 
& Julesz, 1993).
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RESULTS

Test contours

In order to be able to directly address the issue of V1 connectivity, we employed the con-
tour-in-noise stimuli used in a number of behavioral, physiological, imaging and modeling 
studies (Altmann et al., 2003; Giersch et al., 2000; Kourtzi et al., 2003; Kovacs, 1996; Ko-
vacs & Julesz, 1993, 1994; W. Li & Gilbert, 2002; W. Li et al., 2008; Z. Li, 1998, 2005; 
Mathes & Fahle, 2007; Yen & Finkel, 1998). The test set of contours was composed of the 
so-called Gabor patches (GPs) that model the receptive fi elds of simple cells. Contiguous 
contours were generated, consisting of 13–14 GPs, and placed at a distance of 7–8 times the 
wavelength-units (lambda) from each other. To each contour, a varying number of randomly 
placed GPs were added as background noise, resulting in a set of contours embedded in an in-
creasing amount of noise (see Figure 3 below and Supporting Information 1). The full set of 
the open versus closed contours used in evaluating our model can be seen in Figures S1–15.

Contour integration algorithm

The main idea underlying the model is that the image is mapped onto the visual cortex in 
a retinotopic manner, and local orientation information is assembled by spreading activity 
through selectively tuned connections. Activation spread is controlled by the proximity of 
activated units, the similarity of orientation tuning and the continuity of longer chains of 
activation. The simplest way to put these ideas into a mathematical model is to imagine the 
activated units as nodes of a network, and the spreading neuronal activity as links between 
the nodes. A threshold-based mathematical form is used to defi ne the network as it is illus-
trated in Figure 2. Links form if two nodes are closer than a length threshold L (proximity 

Figure 2. The principle of geometric fi ltering used by the model. (A) Preprocessing. At this stage, 
two Gabor patches are considered linked (red line) if their distance L is below a proximity threshold 
(proximity fi ltering) and if angle α1 and α2 are below an orientation similarity threshold T1 (similarity 
fi ltering). The angles α1 and α2 are defi ned in such a way that our similarity fi lter checks for the simi-
larity of the orientations and the supporting line of the examined GPs. (B) Continuity Filtering. At this 
stage, three Gabor patches are considered linked (two bold lines), if their angle is above a continuity 
threshold T2. During the calculations, (A) is done once at the beginning while (B) is repeated before 

every propagation step.
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constraint), the angle of the local orientations is below a threshold T1 (similarity constraint; 
see Figure 2A), and if the angle of links pointing to the same activated node is close enough 
to the straight angle (continuity constraint, see Figure 2B). We assume that neuronal activity 
spreads among the activated nodes in an essentially random fashion that we model as a fi nite 
Markov chain with a transition matrix based on the weighted link structure.

The algorithm is implemented in two phases:
1. Preprocessing (Proximity and Similarity Filtering). The input data (see Figures S1–

15) are transformed into an initial interaction network in which the nodes are the orienta-
tion-tuned units, and the edges represent facilitatory neuronal activation. Edges are formed 
when the distance between two nodes is shorter than a distance threshold L and their similar-
ity value (Figure 2A) is below a threshold T1. This yields a relatively sparse network of initial 
connections (Figure 3).

2. Continuity Propagation. In this phase, we fi rst weight the edges of the network, and 
then iteratively propagate the weights using a random walk algorithm. The weights wij 

are 
computed from the number of continuous (collinear) edge-pairs cpij a particular edge partici-

Figure 3. The step-by-step results of the algorithm with images containing open (top panels) versus 
closed (bottom panels) contours. Images 8O and 8C (see Figure S8) are of intermediate diffi culty for 

human observers.
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pates in. Two edges are considered continuous if their angle is close enough to the straight an-
gle – above a threshold T2 (Figure 2B). As the number of edges changes during the iterations, 
we recalculate cpij in every step as shown in section Materials and Methods. As a result of 
the propagation, some edges of the network will amplify while others fade away. Typically, 
the edges representing continuous patterns remain, while randomly emerging noise disap-
pears, so the result is a graph that contains only the edges belonging to the perceived pattern 
(Figure 3). We note that the activation is strictly local; it depends on signals received by the 
individual nodes. No complex relationships (such as link triplets) are necessary. We also note 
that the weights of the links correspond to signal strength, and not to neural connectivities. 
The changes in activation thus refl ect the dynamics of the system which is approximately 
described as a Markov process.

The performance of the model is characterized by a so-called F-measure used in statis-
tics that is calculated from the number of correctly identifi ed edges in the pattern (TP), the 
number of erroneously identifi ed edges in the background (FP), and the number of edges 
not identifi ed along the contour (FN). The F-measure is then calculated as F = 2TP/(2TP + 
FN + FP) which results in a value between 0 and 1.0. When F = 1.0 a pattern is identifi ed 
without errors (e.g., the pattern shown in Figure 3). We found that the threshold values of the 
parameters: L = 7–12 λ, T1 = 30–50 degrees, and T2 = 100–160 degrees gave correct results 
after a few steps of iteration, i.e., the circular patterns appeared without any errors (Figure 
S7C). The tightness of the threshold only affects the required number of propagation steps 
necessary to reach convergence: the tighter the thresholds, the fewer propagation steps are 
required for the pattern to appear without any errors. We used the tightest threshold settings 

Figure 4. Recognition quality expressed in F-measure (see text) of open and closed contours in sequen-
tial phases of the algorithm. The contour numbers 7C and 7O refer to Figure S7. The algorithm carries 

out the steps in the order indicated on the x axis.
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for all images, and averaged the performance after rotating the images by 5° until a full 360° 
rotation was completed. The tightest thresholds for each image were selected separately in 
such a manner that we assured all GPs from the pattern met all fi ltering criteria.

Open versus Closed contours

Figure 4 illustrates the changes in recognition quality (F-measure) of a closed and an open 
contour throughout the preprocessing and propagation steps of the algorithm. The closed 
contour is amplifi ed, while the open contour fades away, which is a result of propagation, 
i.e., spreading activation through the network. Notice that only a few (1–2) propagation steps 
are needed for perfect recognition of the closed contour. The fact that the recognition qual-
ity (F-measure) of the open contour vanishes after a few propagation steps does not mean 
that open contours are not perceived. It simply means that the activation dynamics are very 
different for open and closed contours. No assumptions are made on how the information is 
further processed.

As described in the Materials and Methods section, we systematically varied the amount 
of background noise for both open and closed contours. Figure 5 summarizes the effects of 

Figure 5. Comparison of recognition quality on open and closed contour images of increasingly dense 
noise backgrounds. The numbers on the x axes are the contour densities of the open and closed contour 
images, and indicate that the background noise increases from higher to lower contour densities (see 
Figures S1–15). The vertical line drawn at about 0.725 corresponds to the average human recognition 
performance seen in earlier studies (Kovacs & Julesz, 1993). Recognition quality was measured after 
(a) the preprocessing step; (b) the 1st propagation step; (c) the 3rd propagation step; (d) the 7th propa-
gation step. Note that the difference between the closed contours (continuous line) and open contours 

(dashed line) increases upon propagation.
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noise on recognition quality after preprocessing and propagation. Lower levels of noise 
clearly lead to better recognition of both open and closed contours at the preprocessing 
level. However, propagation affects them differently. Closed contours are enhanced, and 
those with higher levels of noise become correctly recognized with more propagation 
steps. Open contours fade away as propagation goes on. The difference between closed 
patterns (continuous line) and open patterns (dashed line) increases with propagation. Hu-
man threshold performance for closed contours (Kovacs & Julesz, 1993) is indicated by 
the vertical line.

DISCUSSION

We presented a highly simplifi ed computational model that contains only three basic fea-
tures of the long-range connectivity network of the primary visual cortex (V1): local orien-
tation measurements, orientation and distance selective connections, and spreading neural 
activity. Our model is built on two mathematical conditions: threshold based selection of 
connections and propagation of neural activity. We found that this simplifi ed network mod-
el is capable of detecting contours in a noisy background, with sensitivity to background 
noise and a preference for closed contours that resemble human performance (Kovacs & 
Julesz, 1993).

Standard models of V1 do not address the issue of interacting neuron populations 
( Olshausen & Field, 2005), suggesting that they are not relevant in predicting psychophys-
ical performance in contour integration studies, and therefore cannot provide an account of 
the full computational power of V1. The “association fi eld” idea of David J. Field and his 
associates (Field et al., 1993) includes the fi rst preprocessing phase of our model, where local 
interactions are biased towards co-oriented and co-axial fi lters. However, the propagation 
phase implemented by our algorithm has not been suggested earlier. In terms of the actual 
anatomical connectivity of V1, a bias towards co-oriented and co-axial long-range connec-
tions of layer 2/3 pyramidal neurons have been convincingly demonstrated (Bosking et al., 
1997), although the presence of non-coaxial connections is also obvious (see, e.g., Figure 4 
in (Bosking et al., 1997)). We suggest that continuity propagation might be mediated with 
such an architecture, where co-oriented connections are weighted differently for co-axial 
and non-coaxial retinotopic arrangements. We mention that from the computational point of 
view, our model uses a minimalist approach that applies the fundamental concepts of Gestalt 
psychology – proximity, similarity and continuity – to the spreading of neuronal activation 
signals.

Our model suggests that the properties of long-range facilitatory connections should be 
further tested in V1, with a particular emphasis on the exact tuning of these interactions for 
both orientation and space. Since the model produced global effects, such as a preference for 
contour closure, it would be interesting to see whether shape-related effects – as described 
in (Kovacs, 1996; Kovacs, Feher, & Julesz, 1998; Kovacs & Julesz, 1994) – can be a conse-
quence of such a connectivity pattern as well.

Long-range lateral intralaminar connections between pyramidal cells seem to be a ubiq-
uitous feature of the superfi cial cortical layers across species. Such connections have been 
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observed in cat (Gilbert & Wiesel, 1989; Kisvarday & Eysel, 1992); tree shrew (Rockland 
et al., 1982); and monkey (Rockland & Lund, 1983), for example. It has recently been 
suggested that these long axonal projections shape the neocortex into “canonical circuits” 
serving spatiotemporal integration within the functional maps (Douglas & Martin, 2004, 
2007; Tsodyks, Kenet, Grinvald, & Arieli, 1999). It remains to be seen what the computa-
tional power of fi nely tuned interactions is across different species, and different modali-
ties.

In summary, we found that a model, implementing only a few important features of the 
processing layer in the primary visual cortex, such as local orientation measurements, orien-
tation and distance selective connections and spreading neural activity, adequately predicts 
low-level image-segmentation characteristics of human vision.

MATERIALS AND METHODS

Test images

The test images listed in Table 1 were generated by the method fi rst described in (Kovacs 
& Julesz, 1993), and developed further in (Kovacs, Polat, Pennefather, Chandna, & Norcia, 
2000).

Table 1. Codes and characteristics of the test images used in this study. The images and their main 
statistical parameters are in Figures S1–15.

Closed contour Open contour GP–GP distance D [λ units] Relative density
(Dbackground/Dcontour)Background Contour

1 C 1 O 8.4 7 1.20
2 C 2 O 8.1 7 1.16
3 C 3 O 7.7 7 1.10
4 C 4 O 7.4 7 1.06
5 C 5 O 7.0 7.1 0.99
6 C 6 O 6.7 7 0.96
7 C 7 O 6.3 7 0.90
8 C 8 O 5.9 7 0.84
9 C 9 O 5.6 7.1 0.79

10 C 10 O 5.2 7 0.74
11 C 11 O 4.9 7.1 0.69
12 C 12 O 4.5 7 0.64
13 C 13 O 4.2 7 0.60
14 C 14 O 3.8 7.2 0.53
15 C 15 O 3.5 7 0.50
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Model

The input of the algorithm is an image composed of a set of Gabor patches, each patch being 
characterized by ri = (rix, riy) coordinates in the plane and two coordinates, di = (dix, diy) of an 
orientation unit vector. The algorithm takes the Gabor patch data as input, and then calculates 
an interaction network in two phases:

1) Preprocessing (proximity and similarity fi ltering). We consider two Gabor patches linked 
by an edge within the network if the distance and orientation similarity (coaxiality) con-
straints defi ned in Figure 2A are met. This calculation yields a network (G = (V, E) graph) 
whose adjacency matrix M contains values of 1 if two Gabor patches are linked and zero 
otherwise. We defi ne the graph G = (V, E), where V is the set of Gabor patches on the image, 
and the set of edges is E. An edge is considered between two Gabor patches vi and vj if and 
only if the two criteria below are met:
 

i jr r L− < ,  (Proximity fi lter)

 ( ) ( )( ) 1max , , ,i j i i j jr r d rr d T∠ ∠ < ,  (Similarity fi lter)

where ri rj denotes the line formed by the positions of the two (ith and jth) Gabor patches.
We will use the adjacency matrix M of the above constructed graph G in the next phase 

of the algorithm.

2) Continuity Propagation. This part of the algorithm consists of two phases: 2.1) Continuity 
weight computation – Algorithm 1: steps 1–2, and 2.2) Propagation – Algorithm 1: steps 3–5.

2.1. We fi rst weight the edges of the starting interaction network. The weights wij are 
computed from cpij, which is the number of continuous (collinear) edge pairs a particular 
edge participates in, according to the following formula:

 ( )cardij ijcp CP= ,

where
 ( )( ){ }2max , , 0, 0ij k i j j k ij jkCP v rr r r T m m= ∠ > ≠ ≠ .

A particular edge can participate in more than one continuous edge-pairs, so the value of 
cpij equals the number of adjacent edges for which the continuity constraint (Figure 2B) 
is met (0 ≤ cpij number of adjacent edges). If no adjacent edges fulfi l the constraint, the 
edge gets a weight wij of zero and is thus deleted; otherwise the weight gets the value of 
1 if it is involved in a single continuous edge pair, and the value of 2 if it has at least two 
collinear edge pairs.

2.2. The weights wij are propagated on the network using an absorbing random walk 
model. After one propagation step, edges not fulfi lling the absorption criteria are deleted. 
In each propagation step the occupancy of the nodes are computed (see step 4 in Algo-
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rithm 1) and nodes with an occupancy value lower than 50% of the average occupancy 
are deleted.

We start with initializing a TM 0 matrix with the identity matrix, and defi ne the occupancy 
values P0 for all vertices equally (e.g. P 0 = 1/number of vertices). The above two steps are 
than repeated until convergence (see Algorithm 1). During the propagation phase, at each 
step, edges are deleted, and the calculation is terminated when the number of edges remains 
constant for two consecutive steps. In practice, this state is reached after at most 4–5 steps. 
Typical results are shown in Figure 3 and further analysis of the algorithm is shown in Sup-
porting Materials 2.
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Algorithm 1. Continuity propagation algorithm

Initialize TM 0 with the identity matrix, and occupancy values P0 = 1/number of vertices 
for each vertex.

repeat

1. compute cpij or all ver  ces vi and vj s.t. mij ≠ 0.

2. defi ne the weights mij of edges, than row-normalize the resulted weight matrix
0, if 0
1, if 1
2, if 1

ij

ij ij

ij

cp
w cp

cp

⎧ =
⎪= =⎨
⎪ >⎩

3. propaga  on: 1t tTM TM w+ = ⋅

4. for every node vi compute the occupancy as:

{ }

1 1

0j ij

t t t
i i ij

j v m

P P TM+ +

∈ ≠

= ⋅ ∑

5. for all vi s.t. Pi < threshold set mij = 0 for all vj

un  l convergence

An iteration step can be subdivided into two conceptual phases: i) computation of the 
weighted link structure (steps 1., 2.), ii) Spreading of weights along the network (step 3.) 
and occupancy-based link deletion (steps 4., 5.)
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Supporting Information 1
Test images and statistical properties

Figure S1C Figure S1O

Picture 1
No.

Distance
Min. Max. Avg. Std.

Pattern 13 6.1 7.7 7.0 0.4
Background 119 6.3 10.2 8.4 0.5
All 132 6.1 10.2 8.4 0.5

No.
Collinearity

Min. Max. Avg. Std.
Pattern 13 11.4 34.8 27.0 6.0
Background 119 0.0 90.0 57.6 19.0
All 132 0.0 90.0 57.6 19.0



Beáta Reiz et al.

Learning & Perception 5 (2013) Supplement 2

134

Figure S2C Figure S2O

Picture 2
No.

Distance
Min. Max. Avg. Std.

Pattern 13 6.6 7.4 7.0 0.2
Background 132 5.8 10.3 8.1 0.6
All 145 5.8 10.3 8.1 0.6

No.
Collinearity

Min. Max. Avg. Std.
Pattern 13 8.9 36.9 22.8 6.4
Background 132 0.0 90.0 58.6 18.2
All 145 0.0 90.0 58.5 18.2
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Figure S3C Figure S3O

Picture 3
No.

Distance
Min. Max. Avg. Std.

Pattern 14 6.5 7.4 7.0 0.2
Background 140 5.1 9.8 7.7 0.6
All 154 5.1 9.8 7.7 0.6

No.
Collinearity

Min. Max. Avg. Std.
Pattern 14 11.8 29.7 19.1 4.8
Background 140 0.0 90.0 57.7 19.3
All 154 0.0 90.0 57.5 19.3
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Figure S4C Figure S4O

Picture 4
No.

Distance
Min. Max. Avg. Std.

Pattern 13 6.6 7.5 7.0 0.2
Background 155 5.4 9.3 7.4 0.5
All 168 5.4 9.3 7.3 0.5

No.
Collinearity

Min. Max. Avg. Std.
Pattern 13 10.3 38.3 23.4 7.2
Background 155 0.1 90.0 56.8 18.9
All 168 0.1 90.0 56.7 19.0
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Figure S5C Figure S5O

Picture 5
No.

Distance
Min. Max. Avg. Std.

Pattern 13 6.7 7.6 7.1 0.2
Background 163 5.7 8.4 7.0 0.4
All 176 5.7 8.5 7.0 0.3

No.
Collinearity

Min. Max. Avg. Std.
Pattern 13 16.1 32.9 23.1 4.2
Background 163 0.0 90.0 58.4 18.5
All 176 0.0 90.0 58.4 18.5
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Figure S6C Figure S6O

Picture 6
No.

Distance
Min. Max. Avg. Std.

Pattern 13 6.8 7.4 7.0 0.2
Background 183 5.5 7.8 6.7 0.3
All 196 5.5 7.8 6.7 0.3

No.
Collinearity

Min. Max. Avg. Std.
Pattern 13 8.5 35.2 21.9 6.2
Background 183 0.0 90.0 58.2 19.2
All 196 0.0 90.0 58.1 19.2
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Figure S7C Figure S7O

Picture 7
No.

Distance
Min. Max. Avg. Std.

Pattern 13 6.6 7.6 7.0 0.2
Background 211 4.2 8.4 6.3 0.5
All 224 4.2 8.4 6.3 0.5

No.
Collinearity

Min. Max. Avg. Std.
Pattern 13 12.0 32.5 22.2 6.5
Background 211 0.0 90.0 58.6 18.8
All 224 0.0 90.0 58.6 18.8



Beáta Reiz et al.

Learning & Perception 5 (2013) Supplement 2

140

Figure S8C Figure S8O

Picture 8
No.

Distance
Min. Max. Avg. Std.

Pattern 13 6.8 7.3 7.0 0.1
Background 247 4.3 7.5 5.9 0.4
All 260 4.3 7.5 5.9 0.4

No.
Collinearity

Min. Max. Avg. Std.
Pattern 13 12.7 36.1 24.3 6.8
Background 247 0.0 90.0 57.8 19.4
All 260 0.0 90.0 57.7 19.5
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Figure S9C Figure S9O

Picture 9
No.

Distance
Min. Max. Avg. Std.

Pattern 14 6.5 7.8 7.1 0.3
Background 275 3.3 7.6 5.6 0.5
All 289 3.3 7.8 5.6 0.5

No.
Collinearity

Min. Max. Avg. Std.
Pattern 14 8.8 30.6 20.7 4.7
Background 275 0.0 90.0 58.2 19.3
All 289 0.0 90.0 58.2 19.3
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Figure S10C Figure S10O

Picture 10
No.

Distance
Min. Max. Avg. Std.

Pattern 13 6.5 7.5 7.0 0.3
Background 318 1.7 9.0 5.2 0.9
All 331 1.7 9.0 5.3 0.9

No.
Collinearity

Min. Max. Avg. Std.
Pattern 13 14.5 34.5 23.5 4.5
Background 318 0.0 90.0 57.7 18.9
All 331 0.0 90.0 57.8 18.9
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Figure S11C Figure S11O

Picture 11
No.

Distance
Min. Max. Avg. Std.

Pattern 14 6.8 7.3 7.1 0.1
Background 364 3.4 6.1 4.9 0.3
All 378 3.4 7.3 4.9 0.3

No.
Collinearity

Min. Max. Avg. Std.
Pattern 14 10.8 30.9 18.9 4.9
Background 364 0.0 90.0 57.7 18.8
All 378 0.0 90.0 57.7 18.8
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Figure S12C Figure S12O

Picture 12
No.

Distance
Min. Max. Avg. Std.

Pattern 14 6.6 7.5 7.0 0.2
Background 415 3.5 5.6 4.5 0.2
All 429 3.5 7.5 4.5 0.3

No.
Collinearity

Min. Max. Avg. Std.
Pattern 14 12.5 29.0 22.3 4.2
Background 415 0.0 90.0 58.0 18.7
All 429 0.0 90.0 58.0 18.7
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Figure S13C Figure S13O

Picture 13
No.

Distance
Min. Max. Avg. Std.

Pattern 13 6.7 7.4 7.0 0.2
Background 541 2.8 5.6 4.2 0.3
All 554 2.8 7.4 4.2 0.3

No.
Collinearity

Min. Max. Avg. Std.
Pattern 13 8.2 29.3 19.2 5.3
Background 541 0.0 90.0 58.1 19.4
All 554 0.0 90.0 58.1 19.3
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Figure S14C Figure S14O

Picture 14
No.

Distance
Min. Max. Avg. Std.

Pattern 13 6.8 7.6 7.2 0.2
Background 576 3.2 4.6 3.8 0.1
All 589 3.2 7.6 3.8 0.2

No.
Collinearity

Min. Max. Avg. Std.
Pattern 13 9.4 30.9 19.6 6.8
Background 576 0.0 90.0 58.3 18.8
All 589 0.0 90.0 58.3 18.8
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Figure S15C Figure S15O

Picture 15
No.

Distance
Min. Max. Avg. Std.

Pattern 13 6.3 7.4 7.0 0.3
Background 710 2.7 4.2 3.5 0.2
All 723 2.7 7.4 3.5 0.2

No.
Collinearity

Min. Max. Avg. Std.
Pattern 13 7.9 37.7 18.9 7.3
Background 710 0.0 90.0 58.2 18.8
All 723 0.0 90.0 58.2 18.8
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Supporting Information 2
Additional analysis of the algorithm

 
Figure S2_1 The change of the average occupancy values during the propagation steps, 
calculated on Image 8C (Figure S8, the same figure as seen on Figure 3. from the article). The 
overall behavior of the model for the same image is shown in Figure 3. The error bars indicate 
standard deviation. 
 
 
 
 
 

   

Edges in propagation step 1. Edges in propagation step 2. Edges in propagation step 3. 
Figure S2_2 The change of cp - the number of collinear edge pairs that an edge participates in 
– during the propagation steps. The process is shown on Image 8C (Figure S8). The numbers 
represent cp values for the edge in question. During the iteration steps, edges with cp=0 are 
eliminated in Step 2 of the algorithm (construction of the weight matrix) while edges of low 
occupancy are eliminated in Step 5 (see Algorithm 1).  
 

. 


