
PTMSearch: a Greedy Tree Traversal Algorithm
for Finding Protein Post-Translational
Modifications in Tandem Mass Spectra

Attila Kertész-Farkas1, Beáta Reiz2,3, Michael P. Myers1, Sándor Pongor1,2

1International Centre for Genetic Engineering and Biotechnology, Padriciano 99,
I-34012 Trieste, Italy, 2Bioinformatics Group, Biological Research Centre, Hungarian

Academy of Sciences, Temesvári krt. 62, H-6701 Szeged, Hungary, 3 Institute of
Informatics, University of Szeged, Aradivértanúk tere 1, H-6720, Szeged, Hungary,

kfattila@icgeb.org

Abstract. Peptide identification by tandem mass spectrometry
(MS/MS) and database searching is becoming the standard high-
throughput technology in many areas of the life sciences. The analysis of
post-translational modifications (PTMs) is a major source of complica-
tions in this area which calls for efficient computational approaches. In
this paper we describe PTMSearch, a novel algorithm in which the PTM
search space is represented by a tree structure, and a greedy traversal
algorithm is used to identify a path within the tree that corresponds to
PTMs that best fit the input data. Tests on simulated and real (experi-
mental) PTMs show that the algorithm performs well in terms of speed
and accuracy. Estimates are given for the error caused by the greedy
heuristics, for the size of the search space and a scheme is presented for
the calculation of statistical significance.

1 Introduction

Tandem mass spectrometry (MS/MS) has become the major tool for high
throughput protein analysis in the biomedical field, and the analysis of the
data entirely relies on database searching algorithms. The difficulties in anal-
ysis arise from both the quantity of data, as current instruments can produce
tens of thousands of spectra within an hour, and the quality of data as there are
measurement errors, as well as both missing and extraneous data points.

According to the most widely used methodology, peptide sequences, taken
from a sequence database, are matched with the experimental MS/MS spectra in
order to suggest peptide candidates for further analysis. The algorithmic strategy
is seemingly straightforward: protein sequences are divided into peptide segments
that in turn are converted into theoretical spectra according to chemical rules and
stored in a database [?]. Each experimental MS/MS spectrum is then compared
with all theoretical spectrum in the database, and the most similar peptide is
stored for further analysis.

The difficulties come from the fact that experimental and theoretical spectra
can differ for reasons other than instrument noise. One of the most important

2

sources of variability is the so-called post-translational modifications (PTMs) of
proteins. In biological systems, proteins can carry a number of PTMs on their
amino acid side-chains which leads to a combinatorial explosion in the number of
theoretical spectra to be compared. As there are thousands of already discovered
PTMs [?], accurate identification of PTMs through analysis of high-throughput
MS/MS data is considered a highly challenging problem [?], and this is the
subject of our work.

Here we present PTMSearch, a greedy-tree search algorithm designed for
the identification of PTMs in tandem mass spectrometry data. The approach is
based on a tree-representation of the search space in which nodes are amino acid
positions and branches represent potential PTMs allowed on the type of amino
acid in the given position. In this representation, a path from the root to a leaf
represents a peptide with PTMs. PTMSearch uses a greedy traversal procedure
to find the path in the tree that best fits to the input data. PTMSearch includes
tree pruning heuristics in order to keep the computation time reasonable and
polynomial.

The rest of this paper is structured as follows: Section 2 is a brief outline of the
spectrum comparison problem and the role of PTMs in the process (optional).
Section 3 is a summary of related work. In Section 4 we describe our proposed
algorithm and the speedup methodologies. Section 5 describes the calculation
of significance used with the algorithm. Section 6 contains the results obtained
on experimental datasets and comparisons with other method. Section 7 is a
discussion of the results and an outline of future work.

2 MS/MS spectra and PTMs

This section presents a simplified description of mass spectra for readers not
familiar with the field. Of the various and continuously changing techniques of
mass spectrometry, we selected the most widely used method, collision induced
dissociation (CID), to demonstrate the principle of spectrum analysis. Tandem
mass spectra peptides (MS/MS spectra, hereafter: spectra) are produced by
mass spectrometers by fragmenting peptides (typically up to 20-30 amino acids
in length) at given positions of the peptide chain. In theory, fragmentation results
in a series of peptide fragments of which two types, the b and y ions are used most
frequently for identifying peptides. A theoretical fragmentation pattern can be
calculated based on the sequence alone, this is called the theoretical spectrum,
the x axis is the molecular mass of the fragment peak (more exactly the mass over
charge ratio m/z of the fragment ion) the y axis is proportional to the quantity
of the ions. Since predicting the intensity in silico has been proven difficult,
the intensity in the theoretical spectra are set to unit. If a post-translational
modification (PTM) occurs at one position (amino acid) of the peptide (say at
the M residue), than the (m/z) of all fragments in which this position is included
will be shifted by a value corresponding to the modification. This will result in
an altered theoretical spectrum [?].

3

Fig. 1. A simplified outline of peptide fragmentation, shown on the example peptide
HQGVMVGMVQK A) In the mass spectrometer, peptides are fragmented at certain
points of the backbone. B) In theory, the resulting b and y ions form a regular series. C)
This series is represented as a theoretical spectrum. D) If a modification is introduced,
say at the 2nd residue (Q) of the sequence, all b and y ions that contain that residue
will be shifted by a value corresponding to the molecular mass of the modification
(see arrows). In this example we show the effect of deamidation at Q in position 2,
which decreases the molecular mass by 17.03 Daltons (small negative shift indicated
by arrows). E) An experimental spectrum of the same peptide recorded by a CID mass
spectrometer. The annotated peaks correspond to the b− y fragment ions. Some b− y
ions e.g. b1, y9 are not observed in this example, all other peaks can be considered
noise.

4

Eventhough experimental spectra, produced by the mass spectrometer may
contain only some of the peaks predicted by the theoretical spectra, the peak
intensities (y axis) vary in a broad range and the spectrum is always laden with
noise peaks, a classical numerical similarity measure should be able to tell if the
experimental spectrum is closer to the modified or to the unmodified spectrum,
even if the overlaps of noise peaks with modified peaks can obscure the results.

One of the simplest similarity measure for two spectra (an experimental and
a theoretical spectrum) is the so called shared peak count (SPC), which is the
number of peaks that are on the same position (m/z) within a given tolerance
range, called (fragment) ion tolerance. Formally, for an experimental spectrum
q and theoretical spectrum t, the number of shared peaks can be computed as,

SPC(q, t) = |{(qi, tj) : |qi − tj | < δ}|, (1)

where ai is the location (m/z) of ith in the spectrum a and δ is the ion tolerance.
In the case of PTMs, the algorithms must take into account the mass difference
of the precursor ion and the resulting fragment ions, as the algorithms typically
compare experimental and theoretical spectra coming from precursors with sim-
ilar masses. Since we do not know which PTM to expect we need to produce
theoretical spectra for all of them. There are many different kinds of protein mod-
ifications (the Unimod database lists over 500 types of them www.unimod.org)
and in most cases the modifications are only partial i.e. both the modified and
the unmodified amino acid can be present. The result is a combinatorial explo-
sion which makes the accurate identification of PTMs an especially challenging
problem. For instance, if we allow 5 of the 10 most frequent modifications to oc-
cur in a peptide, the search space grows 3 orders of magnitude, but the growth
is more dramatic if instead of 10 types of modifications we wish to consider all
of roughly 500 known types [?].

3 Related work

There is a large body of literature on the computational identification of PTMs
in MS/MS spectra (for excellent reviews see [?]). The methods fall in 3 large
categories:

– Targeted PTM identification. In this case, the user/experimenter has to de-
fine the types of PTMs and input these as parameters to the program.

– Untargeted PTM identification. This approach uses a full list of known
modifications as a vocabulary, such as UniMod www.unimod.org or ResId
http://www.ebi.ac.uk/RESID/.

– Unrestricted PTM identification. (also called de novo or blind PTMs iden-
tification). Here, no assumptions are made about the PTMs, but all shifts
that obey the chemical rules (and are recurrent in a dataset) are considered
as potential PTMs. Here, novel PTMs can be identified, but unfortunately
the statistical significance of the hits are often low, especially when more
then one PTM per peptide is allowed.

5

In practice, search engines running on single CPU computers can handle
up to 4-5 modifications per peptide, above this limit the search space becomes
too large and analysis often becomes too time-consuming [?]. From the many
programs available we mention two:

MS-Alignment. The Pevzner group has proposed a model for unrestrictive
PTM identification that seeks to identify an optimal alignment between the
experimental and the theoretical spectrum that maximizes the overlap of the
peaks between the two spectra via peak shifting [?]. One shift represents one
PTM and the size of the shift will represent the molecular mass of the PTM.
The method is analogous to finding an optimal edit distance between two strings.
The program is freely available and an online web server can be found at: http:
//proteomics.ucsd.edu/LiveSearch/.

PILOT PTM.(Prediction via Integer Linear Optimization and Tandem
mass spectrometry) uses a binary integer optimization model for finding PTMs
that best match the experimental data [?]. This is an untargeted method i.e.
PILOT PTM uses a vocabulary of PTMs. Given a template peptide sequence of
amino acids, the model will seek to determine the optimal set of modifications
among a ”universal” list of PTMs. Then the obtained binary linear model is
solved by relaxing the variables and cutting plane techniques.

We describe an alternative approach in which the PTM search space is
mapped to a tree structure and finding an optimal set of PTMs is reduced
to a tree traversal problem. The resulting tree is still too big for the classical,
exhaustive tree traversal algorithms (such as depth-first search, breadth-first
search [?]), so we developed a greedy traversal algorithm.

4 Method: The PTMSearch algorithm

The PTMSearch algorithm compares an experimental spectrum to a peptide
sequence in order to identify PTMs untargeted way. Briefly, the algorithm gen-
erates all possible modifications of a peptide sequence and selects the set of
modifications for which the precursor mass of the modified peptide is within a
small tolerance of the precursor mass of the spectrum. If there is more than one
such set of PTMs, the algorithm selects the one that shares the maximum num-
ber of peaks with the experimental spectrum (eqn 1). Since the search space is
prohibitively large, PTMSearch uses a greedy approach and speedup techniques
in finding the optimum.

Let q be an experimental spectrum and p = a1a2 . . . an be a peptide sequence
and let’s denote the precursor mass of q and p by PM(q), PM(p) respectively.
Let La be a list of modification masses for the amino acid a and na = |La|
denote the number of the elements in the list. A modification mass is the mass
difference that the amino acid gains or looses due to the molecular modification.
For example Lc = {−17.0265, 47.9847, 57.0215, 71.0371, . . . } means the amino
acid cysteine can loose 17.065Da (occurs via losing of ammonia from cysteine),
can gain 47.9847Da (occurs via complete oxidation), can gain 57.0215Da (occurs
via carbamidomethylation), etc. respectively. The molecular mass of the cysteine

6

is 121.16Da which becomes 178.1815 after carbamidomethylation. Note that one
particular amino acid molecule is not modified with more than one modification
at the same time, but an amino acid can be modified with various modification
at different occurrences in the peptide sequence (and in different peptides as
well).

The basic idea is to generate all modified variations of peptide p and store
them in a prefix tree, where a branch at the level i denotes PTM on amino acid
ai+1.

More formally, the tree node at the level i is a structure v = ⟨s, b, y,m, c⟩,
where s is a score of the node, c is the number and m is the sum of the mass of
the acquired modifications in the sequence a1 . . . ai. Finally the variables b and
y store the masses (m/z) of the b and y fragment ions that correspond to the
a1 . . . ai and ai+1 . . . an fragment ions respectively.

We recursively define the tree and the values stored in the node structures as
follows: The root node is ⟨0, 0, PM(q), 0, 0⟩. If v = ⟨s, b, y,m, c⟩ is a node in the
tree at the level i (0 ≤ i < n) then the node v0 = ⟨s′, b+mai+1 , y−mai+1 ,m, c⟩
is a child of the node v at level i+ 1, mai+1 is the mass of the amino acid ai+1,
and s′ = s+ s̃(b′) + s̃(y′), where

s̃(x) =

{
1 if ∃j : |qj − x| < δ
0 otherwise,

(2)

where qj denotes the (m/z) location of the jth peak in the spectrum q and
δ is the ion match tolerance. The nodes vj = ⟨s′, b + mai+1 + mj , y − mai+1 −
mj ,m+mj , c+1⟩ are children of the node v at level i+1, where j = 1, . . . , nai+1 ,
mj is the mass of the jth modification in Lai+1 . s

′ is defined the same as earlier.
The node vj at level i+1 represents that the amino acid ai+1 in the peptide p is
modified with the jth modification from Lai+1 . If the node v is at the level n, then
node v is a leaf. Denote w(v) = s as the score of the node v. A leaf ⟨s, b, y,m, c⟩
is called a goal leaf if |PM(q) − PM(p)| = m up to a small precursor mass
tolerance, that is the mass of the peptide with the acquired modification masses
is equal to the precursor mass of the query spectrum.

We denote this computation tree T and the subtree of T rooted at a node v
is denoted Tv. The number of the nodes in the tree Tv is denoted by |Tv|.

The score of the spectrum q is the maximum of the scores of the goal leaves,
denoted H(q) = max{w(v) | v is a goal leaf in tree T}. This goal can be found
with any kind of tree traversal methods like Depth-first, Breadth-first traversal
algorithms. The modifications on the peptide then can be extracted from the
path between the root and the best goal leaf.

Note that, all nodes at level i (0 ≤ i < n) correspond to the ith amino acids
in p, all have the same nai + 1 children respectively, and the tree is balanced
and all leaves have the same depth. Thus, the number of the nodes in the tree is
|T | =

∏n
i=1(nai +1), which makes the time complexity of the traversal algorithm

impractical. Note that the size of the search space does not depend on the
experimental spectrum q. In the next subchapter we define pruning techniques in
order to maintain the run time polynomial and appropriate for real applications.

7

Fig. 2. Sketch of the computation tree for a peptide. PEP stands for the peptide
sequence starting from above. The nodes at the level i represent the a1 . . . ai peptide
fragments modified in all possible ways.

4.1 Speedup techniques

In this section we present various speedup solutions that prune the search space
and make the algorithm suitable for real-life applications.

Limiting the number of PTMs If we restrict the number of the PTMs on a
peptide to K, then a node ⟨s, b, y,m, c⟩ can be deleted from the tree if c > K.
Thus, the number of the nodes |T ′| in the pruned tree T ′ can be estimated by
the following formula

mK

(
n

K

)
≤ |T ′| ≤ MK

(
n

K

)
≤ MK

K!︸ ︷︷ ︸
const.

nK , (3)

where m = mina{na} and M = maxa{na}, which gives that the number of the
nodes in the tree T ′ is O(nK).

Figure 3 plots a distribution of the number of the modification per amino
acids in our PTM database. See more details about PTM dataset we used in
the Experimental results chapter. There is one amino acid that can be modified
by 32 different PTMs, so M = 32 and there are 5 amino acids that cannot be
tagged by any modification, so m = 0. We can say loosely that the expected
number NL of modifications per amino acid is around 5 or 6.

Greedy Tree Traversal In principle the tree can be traversed by any of
the known tree traversal algorithms. Here, we present a Greedy Tree Traver-
sal (GTT) algorithm that inserts a node to a queue Q when it is visited at the
first time, deletes when all of its children have been visited, and continues the
search from the node with the highest score in the Q. When the size of Q ex-
ceeds a certain limit QT , the node with the lowest score is deleted along with
the corresponding subtree.

8

−5 0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

Number of modifications

C
ou

nt
s

Fig. 3. Distribution of the number of PTMs per amino acids in our PTM database.

The queue Q can be implemented as a priority double ended queue, where
the ordering operator of elements is based on the relation ”<” over the score of
the nodes. In this case, a new node is inserted at the end of the nodes with equal
scores in Q. This algorithm can be described best by the following pseudocode.

Algorithm 1 Greedy Tree Traversal (GTT)
input: Tree T
output: best goal (or NULL if there is no goal leaf)

1 put(Q,root);
2 while Q is not empty
3 v = front(Q);
4 create a non-visited child vj of node v;
5 if all children of v has been visited then pop first(Q);
6 if vj is a goal leaf then update best goal;
7 else put(Q,vj);
8 if size(Q) > QT then pop last(Q);
9 return best goal (or NULL if there is no goal leaf);

It may happen that the true goal leaf is eliminated from the tree by deleting
a node in the 8th code line. Now, we give an estimate about the probability of
eliminating the true goal under the following assumptions: The probability of a
node v matches to a peak by chance (i.e. the score of a child of v is increased due
to one of the fragment ions match with a noise peak) is p = 2 ∗m ∗ δ/PM(q),
where m is the number of the peaks in q. We assume that the peaks are evenly
and independently distributed in the experimental spectrum. Let pe be the prob-
ability of that a (non-noise) peak is missing from the spectrum independently
from other peaks (because either it was not observed or was filtered out in a
preprocessing step).

9

Theorem 1. Using the assumptions and parameters above the probability P (ϵ)

of eliminating the true goal from the search space is P (ϵ) = NL ·p(K+
∑H

j=1 p
j
e),

where H = QT /(NL)
K , QT > M is the bound of the size of the queue Q, and

K is the limit of the PTMs on a peptide to be identified.

Proof. First case: Let’s assume the GTT is on the right path to the true goal
at node v at level i, and the bi+1 and yn−i+1 peaks are not missing. GTT can
leave the true path iff one of the children l of the node v hits a random match by
chance before the right child is extended. In this case GTT will visit all nodes
of the Tl because all nodes in Tl have greater weight than any other nodes in Q.
If |Tl| > QT , then the node v will be deleted from the Q and the right path to
the best node will be lost. Since the path from the root to the true goal has K
branches, each has NL branches, then the probability of this error pϵ1 = K ·NL ·p.

Second case: Let’s assume GTT is on the right path to the true goal at node
v at level i, v has a match, and the bi+1 and yn−i+1 peaks are missing. v has
the unique and greatest score w(v) in Q. (w(v) must be unique, since v had a
match and v’s parent has smaller weight. If there is another node x such that
w(x) = w(v) in the Q, then GTT first traversals Tx, deletes x from Q, then
returns back to Tv.) GTT starts visiting the nodes in Tv Breadth-first way until
a node matches to a peak by chance. Q can store QT nodes of Tv, H = QT /N

K
L

levels. So, H right peaks must be missing from the spectra successively, before
GTT starts deleting nodes of Tv from Q. The probability of that H consecutive
peaks are missing is pHe . Thus, the probability of error of the second case is

pϵ2 = p ·NL ·
∑H

j=1 p
j
e.

Then, the final probability of eliminating the true goal from the search space
can be obtained by summing the cases since they can happen independently.
Thus, we have

P (ϵ) = pϵ1 + pϵ2 = K ·NL · p+ p ·NL ·
H∑
j=1

pje = NL · p(K +

H∑
j=1

pje). (4)

2

Consequence 1. Deleting a node from the tree polynomially reduces the
search space. If we decrease the QT threshold, more node will be eliminated
however the error will grow only linearly.

Consequence 2. The probability P (ϵ) can lessen with more accurate reso-
lution of the spectra, (smaller δ).

Consequence 3. The probability P (ϵ) can lessen via removing more noise
peaks from the experimental data in order to decrease the chance of random
matches.

Remark 1. This greedy approach can be considered as a special case of
the A⋆ algorithm [?], where the distance-plus-cost function is defined h(n) =
g(n) + f(n) for a node n, where g(n) = w(n) is the score from the root to the
node n and f(n) is an estimation of the score from the node n to a leaf, here
f(n) ≡ 0, the constant zero function. Note that h is a monotone function.

10

Remark 2. Let QT = ∞. If Q is implemented as a stack, then GTT traverses
the tree in a Depth-first manner. If implemented as a First-In-First-Out queue,
GTT will function as a Breadth-first search.

Remark 3. Note that, if the query spectrum is compared to an incorrect
peptide sequence, then it doesn’t really matter whether or not we lose the best
goal.

Fast Match heuristics In the process of database search, the experimental
spectrum q is compared to peptide p (from the peptide database), if |PM(q)−
PM(p)| < ∆, where ∆ is a precursor mass tolerance (usually ∆ <1 Dalton).

PTMs can add or subtract several tens or hundreds Daltons with respect
to the precursor mass of the experimental spectrum, thus the precursor mass
tolerance needs to be widened. In this way a query is compared to a very large
of number peptides that will substantially increase the execution time.

PTMSearch includes an additional filtering step we term Fast Match, wherein
a theoretical peptide t is compared to the experimental spectrum q if SPC(q, t) >
F , where F is a given threshold. If we set F = 0, this technique can miss the
correct peptide if both the first and the last amino acids of the peptide carry
PTMs because in this case all the fragment ions are shifted.

10
2

10
3

10
4

10
5

D=[−1,1],F=−1 D=[−50,400],F=3 D=[−50,400],F=2 D=[−50,400],F=1 D=[−50,400],F=0 D=[−50,400],F=−1

Fig. 4. Boxplot diagram about the number of the peptides to be processed per each
spectrum.

Figure 4 shows the number of the peptides to be compared with the query, at
various parameter settings. Simply put, widening of the mass range from D=[-
1,1] to D= [-50,400] increases the number of the peptide comparisons by two
orders of magnitude. However, the application of Fast Match can significantly
reduce the number of comparisons. The data in the plot were calculated on the
experimental dataset described in chapter 6.

11

5 Significance calculation of a hit

In the literature, the number of the random matches between two spectra are
modeled either by Poisson or by hypergeometrical distributions [?,?]. The search
for PTMs can be pictured as a generating all modified theoretical spectra, com-
paring them to the experimental spectrum, and picking the one with the maxi-
mum score. It is known that the distribution of the maximum of random numbers
tends to an extreme value distribution [?]. Thus, we use an extreme value dis-
tribution to calculate the statistical significance (p-value) of the hit to measure
the probability the hit occurred by chance.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

Match

F
re

qu
en

cy

Match distribution
Fitted extreme value density function

Fig. 5. Distribution of the matches on a real dataset. The solid line is a fitted extreme
value probability density function on the experimental data. The number of the allowed
PTMs is set to 3.

In Figure 5 we compared a real (experimental) spectrum against the decoy
dataset, where the limit of the PTMs K = 3. The figure shows that the extreme
value distribution fits the data well.

6 Experimental results

For the experimental tests we used MatLab (version R2010b)as a frame to load
the data and evaluate the results. PTMSearch (and GTT) was implemented
in C++ and used as a module in MATLAB. Computational experiments were
carried out on a Linux cluster with 20 nodes and one frontend node, each with
2.2Ghz CPU and 1GByte memory.

IPIHuman (version 3.71) downloaded from http://www.ebi.ac.uk/IPI/

IPIhelp.html was used as the protein sequence database (86309 sequences).
These sequences were cut into peptides using the tryptic digestion rule in
the Cleavage routine of Matlab’s Bioinformatic Toolbox. This in silico di-
gestion resulted in 727707 unique peptides. For the calculation or theoreti-
cal fragment ions we used the program THEOSPEC 2.0 (available at: http:
//sourceforge.net/projects/protms/files/theospec/)

The list of modifications were downloaded from the OMSSA project site
(http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/

12

algo/ms/omssa/mods.xml) on Dec. of 2010. This file contains 207 records
of PTMs. We have considered only chemical modifications of amino acids.
Therefore the current iteration does not take into account N- and C-terminal
modifications, such as might be found by the removal of the initiator methionine.
Thus, we used PTM records that are tagged by ”MSModType Value = 0” in
the mods.xml file. In the end we obtained 142 PTMs. The distribution of the
number of the modifications per amino acids can be found in Figure 3.

The precursor mass tolerance was set to ∆ = 0.4, the fragment ion match
tolerance was δ = 0.4, and PTMs mass range was set to D = [−50, 400] Da. The
Fast Match parameter was F = 1. The size of the queue Q was QT = 50∗ log(n)
based on the author’s observations.

For statistical significance calculation we used a decoy dataset consisting
theoretical spectra calculated from reversed peptide sequences [?,?]. During
database search, the query was first compared with the theoretical peptide
dataset, and then with the decoy dataset [?]. For the evaluation, we plotted
the number of the positives as a function of the False Positive Rate (FPR) at
various thresholds.

6.1 Results on a toy datasets

We generated toy dataset by randomly selecting 200 peptides from the theoretical
database and generating the corresponding theoretical fragment ion peaks. Then,
we randomly added 2-3 PTMs from our list to each of the peptide spectra. This
dataset was then searched against the peptide database with PTMSearch. We
found that our method found all the generated modifications (Data not shown).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Random Hit

F
re

qu
en

cy

PTMs 0
PTMs 1
PTMs 2
PTMs 3
PTMs 7
PTMs 11

Fig. 6. The distribution of the random hits as a function of the PTMs limit K on the
toy dataset. Here the number of the matches were divided the length of the peptide as
a normalization.

13

For an illustration we examined how the limit K of the PTMs interferes
with the expected number of the random matches. We found that, as expected,
increasing the limit of PTMs increases the number of the random matches, which
in turn lessens the statistical significance of the true hit. This is shown in Figure
6. However, this effect could be avoided by increasing the instruments accuracy,
thereby decreasing the ion match tolerance δ parameter.

6.2 Calculations on real data

The Aurum dataset has been designed to provide a standard, manually cu-
rated dataset of experimental spectra for comparison and evaluation of newly
developed algorithmic approaches and is freely available [?]. The dataset con-
tains 1834 MS/MS spectra obtained on 246 known, individually purified and
trypsin-digested protein samples recorded on MALDI TOF/TOF instruments.
The spectra were preprocessed as described in OMSSA [?].

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

100

200

300

400

500

600

700

FPR

#P
re

di
ct

ed
 P

os
iti

ve
s

PTMs 0
PTMs 1
PTMs 2
PTMs 3
random

Fig. 7. The number of identified peptides at various PTM limit as a function of FPR.

The Figure 7 show a plot of the number of the positively predicted spectrum
as a function of the FPR on the Aurum dataset. Table 1 shows detailed results
obtained with PTMSearch at FPR=1% and FPR=5% levels. Columns show the
number of the identified peptides at various PTM limits, while rows show the
distribution of singly-, doubly-, and triply-modified peptides, respectively. For
example, PTMSearch has identified 514 peptides at 5% FPR level, of which
243 peptides contained no modifications, 180 peptides were tagged by exactly 1
PTM, and 91 peptides were tagged by exactly 2 PTMs.

PTMSearch reported an unexpectedly large number of propionamide mod-
ifications of cysteine in the Aurum dataset. Including triply modified peptides
PTMSearch found 138 cysteines that carry this Acrylamide adduct. We then
used X!Tandem [?] to perform targeted search for this modification and could

14

Table 1. The number of the peptides identified with PTMSearch at 1% and 5% of
FPR respectively.

FPR PTMs 0 1 2 3

1% sum 352 374 362 258

0 352 240 203 138
1 134 113 62
2 46 28
3 30

5% sum 410 553 514 416

0 410 295 243 194
1 258 180 105
2 91 42
3 75

Time(min) 11 120 754 1281
1281 minutes is approx. 21 hours.

only validate 58 propionamide modifications. This data further supports the
importance of untargeted search for PTM discovery.

This filtered Aurum dataset was submitted to the online version of MS-
Alignment at http://proteomics.ucsd.edu/LiveSearch/ [?]. Here the pre-
cursor mass tolerance and the ion tolerance was the same as in the PTMSearch
case. The database was the IPI.Human (v.3.81), The modification mass range
was set to D = [−200, 200]. Results are presented in the Table 2. Note that,
the run time cannot be compared to PTMSearch run time since neither the sys-
tem architecture nor the load of the MS-Alignment server were known. Limit of
PTMs was set to 1. MS-Alignment has identified 287 peptides with at most one
PTM, while PTMSearch identified 553 peptides under same conditions.

Table 2. Results obtained with MS-Alignment. PTMs limit is 1.

FPR PTMs 0 PTMs 1 sum Time

5% 196 91 287 5.5 days

7 Discussion, future plans

Protein identification based on tandem mass spectrometry and database search
is fast growing field in continuous need of new computational approaches. The
untargeted PTM search algorithm described targets one of the most difficult
problems in this field, identification of post-translationally modified proteins.

The novel features of the approach are the tree-representation of the search
space, the greedy heuristics based on chemical rules and the speedup techniques
that allow one to bring down the computational speed to a manageable level.

15

We investigated the computational properties of the heuristics and showed that
the limits imposed on PTMs decrease the search space to polynomial. We gave
an estimate to the error introduced by the greedy heuristics and presented a
significance calculation scheme appropriate for this algorithm.

The current work was undertaken in order to demonstrate the feasibility of
the tree-traversal approach. There are many further improvements possible, for
instance one can use spectrum similarity measures instead of the simple SPC
employed here. The current algorithm is apparently not substantially faster as
compared to other PTM identification methods, however an exact comparison
could not be made because of code availability problems. Nevertheless, a sub-
stantial speedup can be expected upon massive parallelization or porting the
algorithm to GPU processors, since tree-traversal algorithms are known from
this perspective. We plan to include the algorithm into a free online search en-
gine where those computational aspects that were outside the scope of this work
(data filtering, protein inference etc.) will also be dealt with.

