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Abstract: Text mining methods can facilitate the generation of biomedical hypotheses by suggesting novel associa-
tions between diseases and genes. Previously, we developed a rare-term model called RaJoLink (Petric et al, J. Bio-
med. Inform. 42(2): 219-227, 2009) in which hypotheses are formulated on the basis of terms rarely associated with a 
target domain. Since many current medical hypotheses are formulated in terms of molecular entities and molecular 
mechanisms, here we extend the methodology to proteins and genes, using a standardized vocabulary as well as a 
gene/protein network model. The proposed enhanced RaJoLink rare-term model combines text mining and gene pri-
oritization approaches. Its utility is illustrated by finding known as well as potential gene-disease associations in ovar-
ian cancer using MEDLINE abstracts and the STRING database. 
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1. INTRODUCTION 

 Research in life sciences is only possible today with ac-
cess to online literature databases. This body of information 
is constantly broadening in scope, which presents a challenge 
to text mining researchers seeking to extract information for 
life scientists [1]. Hypothesis generation is a specific task in 
this large area. The term refers to generating a surprising or 
unexpected supposition based on information extracted from 
text resources [2]. From a data-mining perspective, text-
based hypothesis generation is a case of link discovery [3], 
i.e. a hypothesis can be considered as a potential link be-
tween pre-existing knowledge items. In the genomics era, 
hypotheses are often formulated as relations involving mo-
lecular entities, such as genes, proteins, drugs, metabolites, 
etc. Text-based hypothesis generation approaches have been 
effectively applied in the detection of disease-drug interac-
tions [4], gene-disease relationships [5], protein-protein inter-
actions [6], pathway related information [7] as well as other 
bio-molecular events [8].  

 Previously we developed a computing methodology 
called RaJoLink which is designed to find associations be-
tween terms that are rarely used within a given domain of 
interest [9]. In this approach, a hypothesis is defined as an 
association between a rare, potentially interesting term and 
another term, such as a disease. In the present work we seek 
to extend this approach to more efficiently generate  
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hypotheses relating to associations between diseases and 
genes. From a text-mining perspective, genes are terms de-
fined in well-curated nomenclatures such as the HUGO Gene 
Nomenclature [10], so the task of incorporating them into a 
hypothesis generation framework would appear straightfor-
ward at first.  

 However, we have found that scientific articles use a 
variety of names for the same gene. This makes it difficult to 
differentiate between known and potentially novel gene-to-
disease associations. For this reason we have explored the 
possibility of using an additional knowledge source, namely 
gene-to-gene association networks given in molecular data-
bases such as STRING [11] or other protein-interaction da-
tabases to extend our methodology to find genes potentially 
associated with a given disease. 

 We disregard genes that are explicitly known to be asso-
ciated with a target disease to identify genes that may be 
worth further examination in the future. We benchmark the 
method on marker genes in ovarian cancer [12], and show 
that prior biomedical literature can point towards genes sub-
sequently shown to be linked to ovarian cancer. We intro-
duce the background to literature-based hypothesis discovery 
and gene-disease associations (section 2) and describe the 
data and the computational methods used in this study (sec-
tion 3). We then present the new methodologies for finding 
gene-disease associations and the application of these meth-
ods for discovering genes related to ovarian cancer (section 
4). Sections 5 and 6 contain the discussions and conclusions, 
respectively. 
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2. BACKGROUND AND RELATED STUDIES 

2.1. Swanson’s Model 

 Swanson [13] first showed that bibliographic databases 
can serve as rich sources of undiscovered relations between 
already-existing data. Subsequently a powerful text analy-
sis method was proposed and developed for generating hy-
potheses from previously disjointed sets of literature [14]. 
For many complex scientific problems, cooperation across 
the boundaries of different disciplines is often required. In 
such situations, software tools can support researchers in 
crossing domain boundaries by assembling separate pieces 
of knowledge into a logical context. This is extremely im-
portant for open knowledge discovery (hypothesis genera-
tion) where hypothesis target concepts are not yet defined 
[15]. On the contrary, the hypothesis of a closed discovery 
process is known, and the goal is to validate the connection 
between the hypothetically associated phenomena. In an 
open discovery process, only the investigating phenomenon 
is specified at the start of the process. If we are investigat-
ing a concept denoted with the term a, the open knowledge 
discovery process starts with having only the term a and 
the corresponding set of articles in which term a appears 
(called also literature A). Intermediate B terms are then 
used to discover the target term c (and the corresponding 
literature C). Term c is not defined a priori.  

 

 
Figure 1. Swanson's ABC model for hypothesis generation 
[13,16]. 

 
 Swanson’s ABC model approach investigates whether 
an agent A is connected with a phenomenon C by discover-
ing complementary structures via interconnecting phenom-
ena B (as shown in Fig. 1). If one literature discusses the 
relations between A and B, while a disparate literature in-
vestigates the relations between B and C, then the two lit-
eratures are complementary. The combinations of previ-
ously unknown but meaningful relations between A and C 
can be viewed as a new piece of knowledge that explains 
the phenomenon A. Consequently, following the comple-
mentary but disjointed literature items A-B on one hand 
and B-C on the other, one can hypothesize that there is a 
novel, plausible indirect association A-C if there are pub-
lished relations A-B and B-C but no known direct relation 
A-C. From here we will use uppercase symbols A, B, and C 

to represent sets of terms (e.g., literature or collection of 
records), while lowercase symbols a, b, and c for single 
terms.  

 By considering unconnected sets of articles several new 
discoveries were made by Swanson. In one study, he dis-
covered that Raynaud’s syndrome can be treated with die-
tary fish oil [13]. Similarly, while studying the literature on 
migraines and separately the literature on magnesium, 
Swanson found implicit connections that were unnoticed at 
the outset of his research [16]. He noticed the possible rela-
tionship between the disjoint literatures by linking terms 
found in both sets of literatures. Prior to the Swanson’s 
discovery, few researchers had paid attention to a direct 
migraine - magnesium or Raynaud’s syndrome – fish oil 
connection. Numerous laboratory and clinical investiga-
tions started only after the publication of Swanson’s in-
sights. In particular, the migraine - magnesium example 
has become a gold standard in the medical literature min-
ing field and has been used as a point of reference in sev-
eral studies [2], [15], [17],[18]. 

2.2. Rare-term Model  

 To support literature-based link discovery, we devel-
oped a text mining model called RaJoLink [19]. This model 
examines rare pieces of information identified in biomedi-
cal text corpora and generates scientific hypotheses in a 
semi-automated way.  

 

 
Figure 2. Hypothesis generation according to the original rare-
term model. 

 
 In the original model the choice of candidate hypothesis 
was based on terms that rarely appear in the literature (see 
Fig. 2). The method consists of three principal steps, Ra, Jo 
and Link, named after the key elements Rare terms, Joint 
terms and Linking terms, respectively. In the first step, Ra, 
the terms that rarely appear in literature about the phenome-
non A are identified. In the second step Jo, MEDLINE arti-
cles (titles or abstracts) about the selected rare terms are in-
spected and joint terms that appear in the intersection of the 
literatures about rare terms are identified as the candidates 
for C. In order to provide explanation for hypotheses gener-
ated in step Jo, in the Link step the method searches for b-
terms that connect the literature on joint term c (c-term) and 
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the starting literature A. In other words, steps Ra and Jo im-
plement an open discovery process, while step Link corre-
sponds to a closed discovery process, where A and C are 
both already known and the method is searching for b-terms. 
Methodological details of RaJoLink and its application to 
autism to generate new hypotheses are described elsewhere 
[19],[20].  

2.3. The MeSH Classification 

 MeSH is a controlled vocabulary of the United States 
National Library of Medicine (NLM) created for indexing 
texts in the area of life sciences and to serve as a thesaurus 
that facilitates searching [21]. In the original rare-term 
model, the MeSH classification was used to map the terms 
from free text to the concepts within this controlled biomedi-
cal vocabulary. Each string variant that results from the text 
pre-processing and the morphological analysis of words was 
evaluated against the MeSH thesaurus. This way terms can 
be filtered out by selecting only those categories from the 
MeSH tree structure that the user is interested in. For exam-
ple, the MeSH categories D12: Amino acids, peptides and 
proteins and D08: Enzymes and coenzymes are commonly 
selected if the user is interested in gene-disease associations. 

2.4. The HUGO Gene Nomenclature 

 The HUGO Gene Nomenclature provides a unique and 
meaningful name as well as an abbreviation (gene symbol) 
for every known human gene [10]. A custom downloads 
interface of the HGNC database is publicly available at 
http://www.genenames.org/cgi-bin/hgnc_downloads.cgi. 
The database stores data from individual researchers as well 
as from large-scale projects, such as the Human Genome 
Sequencing Consortium [22]. In the enhanced rare-term 
model, the HUGO gene nomenclature was used to extract 
gene symbols from MEDLINE abstracts. 

2.5. The STRING Database 

 The STRING database [23],[24] is a precomputed re-
source for exploring associations between proteins and their 
genes. Functional associations are inferred from genomic 
associations, from functional descriptions, protein-protein 
interactions, and different evidence types integrated into con-
fidence scores for prediction. The resource contains informa-
tion for 1100 completely sequenced organisms and accessory 
information such as protein domains and 3D structures are 
also provided; the resource can be reached at http://string-
db.org. We used the STRING database for re-ranking the 
results. 

2.6. Finding Gene-disease Associations by Text Mining 

 Text mining has been successfully applied in finding vari-
ous gene-disease associations [25], such as suggesting disease 
marker genes from MEDLINE records and ranking (prioritiz-
ing) genes based on biomedical literature [26]. Reviews of the 
earlier work are found in [27] and [28]. More recently, Hris-
tovski and associates combined DNA microarray data and 
semantic relations extracted from MEDLINE, for generating 
novel hypotheses about potential drug therapies for Parkinson 
disease [29]. Frijters and colleagues also presented an applica-

tion of their literature mining method in an open-ended re-
trieval of hidden relations for hypotheses in terms of gene-
disease, drug-disease and drug-biological process associations 
in their studies of Graves' disease, milnacipran, pitavastatin 
and drugs that could interfere with cell proliferation [30].  

2.7. Gene-disease Associations from Experimental 
Datasets 

 Traditionally, gene-disease associations are based on 
experimental data that have been evaluated manually. High-
throughput techniques can now also mean that it is possible 
to experimentally compare the behavior of all human genes 
in healthy and diseased states. However, the evaluation of 
such lists is not simple [31]. Computational methods of 
“gene prioritization” were developed for this purpose [32]. 
Most of the methods combine the new experimental data 
with a background database containing information on co-
occurrence, functional annotations, protein- protein interac-
tions, pathways, and gene expression. Briefly, we can view 
new experimental data as numerical scores assigned to 
genes, and the background database as a network of genes in 
which the links are defined by one of the methods mentioned 
above. In the process of gene prioritization, the experimental 
scores are updated using the gene network data and the genes 
are re-ranked based on the new scores. Updating of scores 
can be based on graph distance (shortest path), on a propaga-
tion algorithm such as the popular PageRank [33] or on dif-
fusion kernel methods [34], for example. The resulting 
methods differ in the kind of score updating methodology, 
the background database used, and most importantly, the size 
of the data they can handle. Relatively few methods can se-
lect genes from entire genomes or accept input data on all 
genes. For instance, it is customary to restrict the scope of 
candidate genes to a small region of the chromosome using 
methods of linkage analysis or to use known disease genes as 
a training set. One of our goals is to use approaches analo-
gous to the methods of gene prioritization in order to further 
increase the sensitivity of hypothesis generation. 

3. MATERIALS AND METHODS 

3.1. Corpus Collection and Benchmark Datasets 

 The document sets in our experiments were acquired from 
the MEDLINE database through its PubMed system [35] us-
ing the Entrez Programming Utilities [36]. Each document set 
consisted of citations that comprised of abstracts obtained 
from PubMed by executing Boolean queries. The target sets of 
texts were restricted to abstracts of articles, because unlike the 
majority of full texts, they are freely available online in XML 
format.  

 The benchmark datasets were designed to test whether or 
not a method could efficiently predict that a gene plays a 
certain role, which was then experimentally confirmed later. 
For this test, we needed a corpus of abstracts published be-
fore a certain biological role was confirmed. We chose ovar-
ian cancer as the model disease and used a recently pub-
lished list of 37 ovarian cancer biomarker (OC biomarkers) 
genes [12] (Table 1) as test cases. We then wanted to deter-
mine if the relationship between these genes and ovarian 
cancer could have been predicted on the basis of literature 
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published beforehand. In order to have a sufficient number 
of genes in the analysis, we selected the year 2007 as a sepa-
rating line. A total of 10 OC biomarkers have been proposed 
after this date.  

 OC biomarker abstracts were selected using the search 
phrase: (biomarker OR biomarkers OR marker OR markers) 
AND (“cancer of ovary" OR "ovary cancer" OR "cancer of 
the ovary" OR "ovarian cancer" OR "malignant neoplasm of 
ovary" OR "malignant ovarian neoplasm" OR "malignant 
tumor of ovary" OR "malignant tumor of the ovary" OR 
"malignant neoplasm of the ovary" OR "malignant ovarian 
tumor" OR "malignant tumour of ovary" OR "ovarian malig-
nancy" OR "ovarian carcinoma"). This search resulted in 
4,878 abstracts published before the year 2007. We defined 
this set as the OC biomarker test corpus. Separately, 26,979 
abstracts about the known OC biomarker genes [12] (Table 
1) published up until May 14th 2012 were obtained and these 
formed the OC biomarker prediction corpus. The data are 
deposited in supplementary datasets 1-2. We used the 
HGNC gene symbols, names and their synonyms (down-
loaded on December 23rd 2011). Such HGNC nomenclature 
was then applied to the terms that we automatically ex-
tracted from collections of MEDLINE abstracts.  

3.2. Re-ranking Methods 

 From the mathematical point of view, genes selected by 
text mining analysis can be viewed either as an unranked set 
of gene names or as a ranked list wherein genes are charac-
terized by their names as well as by a numerical score. We 
used two kinds of methods for re-ranking the genes selected 
by the enhanced RaJoLink rare-term algorithm described 
here: a) standard gene prioritization methods available via 
gene prioritization web servers (ToppGene and Endeavour 
[93,94] and b) propagation-based methods that were imple-

mented on the STRINGS database [11], as briefly described 
below. In this formulation, a higher score indicates a better 
rank. 

 Re-ranking according to the personalized PageRank algo-
rithm [33] is an iterative procedure where the score of genes 
at the (i+1)th iteration step is calculated as 
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 Re-ranking according to the diffusion kernel method [34] 
can be briefly written as follows:  
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Table 1.  List of ovarian cancer biomarker genes used in this study. 

 Symbol Gene  Symbol Gene  Symbol Gene 

1 CA125 CA 125 [37-40] 14 P16 p16 [41,42] 26 BIRC5 Survivin [43] 

2 KRT19 Cytokeratin 19 [44,45] 15 CDKN1A p21 [46-48] 27 TERT hTERT [49] 

3 KLK6 Kallikrein 6 [50] 16 CDKN1B p27 [51-54] 28 EGFR ERBB1 [55,56] 

4 KLK10 Kallikrein 10 [57] 17 RB1 pRB [58,59] 29 ERBB2 ERBB2 [60] 

5 IL6 Interleukin-6 [61] 18 E2F1 E2F1 [62] 30 MET c-Met [63] 

6 IL7 Interleukin-7 [64] 19 E2F2 E2F2 [65] 31 MMP2 MMP-2 [66] 

7 IFNG -interferon [67] 20 E2F4 E2F4 [65] 32 MMP9 MMP-9 [68] 

8 FAS sFas [69,70] 21 TP53 p53 [71,72] 33 MMP14 MT1-MMP [73] 

9 VEGFR VEGFR [74] 22 TP73 p73 [75] 34 WFDC2 (HE4) Epididymis protein 4 [76-78] 

10 CCND1 Cyclin D1 [46,79] 23 BAX Bax [80,81] 35 SERPINB5 Maspin [82] 

11 CCND3 Cyclin D3 [83] 24 BCL2L1 Bcl-xl [84] 36 BRCA1 BRCA1 [85] 

12 CCNE Cyclin E [86-89] 25 BIRC2 cIAP [90] 37 ERCC1 ERCC1 [91] 

13 P15 p15 [92]       
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t, , and  are the parameters of algorithm. Both algorithms 
were implemented in Matlab. 

4. RESULTS 

4.1. Including Gene Symbols into Hypothesis Generation: 

The Enhanced Rare-term Model 

 We investigated the issue of whether hypotheses about 
presently known gene - ovarian cancer associations could be 
generated by using a cut-off date. The open discovery proc-
ess of the original rare-term model was guided with informa-
tion about terms that are rarely connected to ovarian cancer 
and that represent genes according to the HUGO gene no-
menclature database. We performed ovarian cancer experi-
ments, both with the original and with the enhanced Ra-
JoLink rare-term model. Also, abstracts of MEDLINE arti-
cles served as a source of biomedical information in both 
models, while the HUGO gene nomenclature knowledge 
base was used only in the enhanced RaJoLink rare-term 
model to guide the link analysis from the disease towards 
candidate genes, as shown in Fig. (3). 

 

 
Figure 3. Hypothesis generation in the enhanced rare-term model. 

 

 The enhanced RaJoLink rare-term model is designed to 
finding candidates for the generation of hypotheses (i.e. the 
candidates for C) based on exploring gene names and sym-
bols that rarely appear in the articles of the starting domain A 
(Fig. 3). Compared to the original RaJoLink rare-term model 
[19] the enhanced model explores the open discovery setting 
(hypothesis generation) also from the point of view of dis-
ease-gene link discovery. Moreover, the new methodology is 
based on the assumption that by exploring terms related to an 
approved gene nomenclature, it should be faster to discover 
joint concepts that can reveal previously unknown links from 
literature A to literature C. In fact, the experimental results 
(Table 2) show that the modified methodology improves the 
link discovery.  

 

4.2. Combining Text Mining with Propagation Algo-
rithms 

 Preliminary, exploratory experiments showed that the 
original RaJoLink rare-term model could not easily handle 
protein/gene names. We found that extending it with stan-
dardized protein/gene vocabulary leads to improvement; 
however we also noticed that some of the test genes did not 
rank well in the top of the list. We thus applied an additional 
ranking step in which the output of the text-mining step was 
re-ranked either with the Personalized PageRank algorithm 
(PDR), or the Personalized Diffusion Ranking algorithm 
(PR), or one of the standard gene-prioritization servers 
ToppGene or Endeavour [93,94]. As a result we obtained a 
number of candidate methods that we compared on the 
benchmark datasets. These were the original RaJoLink (OR), 
Enhanced RaJoLink (ER) text mining methods and the com-
bined methods: ER + PR, ER + PDR, ER + Endeavour gene 
prioritization server [93,94] and ER + ToppGene gene priori-
tization server [93,94]. 

4.3 Testing the Methods on Ovarian Cancer Genes 

 Our test cases were based on a list of 37 genes associ-
ated with ovarian cancer (OC) (Table 1) [12]. We designed 
two evaluation scenarios (4.3.1 and 4.3.2). 

4.3.1. Testing the Methods on the Rediscovery of OC Bio-

marker Genes  

 We sought to establish whether the genes that have been 
proposed as OC biomarkers after 2007, could have been pre-
dicted on the basis of prior literature evidence and knowl-
edge. We considered genes suggested as biomarkers as those 
that co-occurred with the term “marker” or “biomarker” in 
MEDLINE abstracts. We used MEDLINE abstracts, MeSH 
and HUGO terms published before 2007 (ovarian cancer test 
corpus, in Supplementary Datasets), and used standard 
propagation algorithms (PageRank or diffusion kernel meth-
ods [33,34]) for re-ranking the results, using the network of 
the STRING database, release version 6.3 (in use from De-
cember 12, 2005 to January 15, 2007). In the re-ranking step 
we could not use the gene-prioritization servers as the cur-
rent servers contain information entered after 2007.  

 Out of the 37 ovarian cancer genes listed in Table 1, 27 
are mentioned together with “marker” or “biomarker” in 
MEDLINE articles published before 2007. The remaining 10 
genes (our target genes) are: BCL2L1, CCND3, E2F1, E2F2, 
E2F4, ERCC1, IL7, MET, MMP9, WFDC2. Six genes were 
identified with the enhanced RajoLink method. For the five 
of these six genes, the ranks could be substantially improved 
by propagation/re-ranking (Table 2). The full ranking is 
deposited as Supplementary Table 4.3.1.  

4.3.2. Prediction of Ovarian Cancer Biomarkers Based 

on Current Knowledge 

 We wanted to establish if any putative gene biomarkers 
might exist for ovarian cancer on the basis of currently avail-
able published knowledge. To achieve this an experiment 
similar to the previous one was completed where i) the data 
input was the ovarian cancer prediction corpus (Supplemen-
tary Dataset 2) which includes abstracts about the known OC 
biomarker genes [12] (Table 1) published up until May 14th 
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2012 and current versions of STRING, MeSH, HUGO no-
menclature data, and ii) the propagation step was carried out 
with the standard propagation algorithms (PageRank or diffu-
sion kernel methods [33,34]), and also with the gene prioriti-
zation servers ToppGene and Endeavour [93,94]. The ranks 
are presented in Supplementary table 4.3.2. It is apparent that 
a number of well/known cancer-related genes appear in the 
top of these lists.  

 For a better overview, we compared the top of the lists 
and picked 10 genes that ranked highly in most of the rank-
ings (Table 3). These include RUNX2, SOCS3, BCL6, 
PAX6, DAPK1, SMARCB1, RAF1, E2F6, P18INK4C 
(CDKN2C), and PAX5. These are all cancer-related genes 
that have not previously been proposed as OC biomarkers 
and have not been mentioned in literature sources together 
with ovarian cancer. These may represent genetic markers 
upon which hypotheses can be formulated in relation to ovar-
ian cancer. 

5. DISCUSSION 

 This work describes an open knowledge discovery meth-
odology that generates hypotheses that are not known in ad-
vance. The methodology suggests potential disease-gene 
associations based on text databases (in our case MED-
LINE), MeSH terms, and the HUGO nomenclature. In some 
cases, the methods presented here achieved suboptimal re-
sults, especially when abstracts contained many possible 
effectors. In these cases the simple, automated relation ex-
traction gave erroneous results. Therefore we believe that the 
present approach can be further improved by integrating 
more sophisticated relation extraction methodologies. Above 
all, we suggest adapting the existing literature-based hy-
pothesis generation techniques in semantic role labeling and 
biomedical relation extraction for the performance improve-
ment. Semantic role labeling is a natural language processing 
technique for identifying the semantic roles of terms and 

phrases within sentences and to extract predicate-argument 
structures directly from texts. In combination with the bio-
medical relation mining these natural language processing 
approaches can be successfully exploited to recognize bio-
medical relations between different entities [95]. Neverthe-
less, we find that unequivocal matching to gene symbols is a 
very important factor, and that re-ranking text-based predic-
tions either by standard propagation algorithms (PageRank, 
Diffusion Ranking) applied to the STRING network, or by 
gene-prioritization servers available on the web can improve 
the efficiency of text-mining searches.  

 Our searches revealed a number of genes that were pre-
viously not associated with progression and prognosis of 
ovarian cancer in MEDLINE abstracts. The RUNX2 tran-
scription factor is a putative tumor suppressor gene localized 
at chromosome 1p36, a region showing frequent loss of het-
erozygosity events in colon, gastric, breast and ovarian can-
cers [96]. RUNX2 has also been associated with prostate [97], 
lung [98], breast cancer [99], osteosarcoma [100] and thyroid 
tumors [101]. Several studies demonstrated a link between 
RUNX2 and the hormonal system in prostate [102] and breast 
cancer [103]. All these data suggest a possible contribution 
of RUNX2 to proliferation via enhancing the growth factor 
effects of sexual hormones. The potential of the gene in this 
association is supported by the prognostic power of hormone 
receptors in ovarian cancer [104]. 

 BCL6 (B-cell CLL/lymphoma 6) is another transcription 
factor found to be frequently mutated in diffuse large-cell 
lymphoma. The gene was related not only to lymphomas 
[105] and leukemias [106] but also to progression to breast 
[107], gastric [108] and lung cancer [109]. Interestingly, both 
BCL6 [110] and RUNX2 [111] are influenced by prolactin 
secretion. 

 The tumor suppressor DAPK1 (death-associated protein 
kinase 1) is one of the key regulators of the extrinsic apop-
totic pathway [112]. Genetic variation of DAPK1 is associ-

Table 2.  Experiment 4.3.1: Rediscovery of genes suggested as OC biomarkers. 

Gene symbol Rank1 

 

Gene Year when first men-

tioned as ovarian can-

cer prognostic marker Original RaJoLink New RaJoLink 
New RaJoLink + 

PageRank 

New RaJoLink + 

Personal Diffusion 

BCL2L1 Bcl-xl 2007 [84] NA2 337 5 10 

CCND3 Cyclin D3 2007 [83] NA 165 43 31 

E2F1 E2F1 2008 [62] NA NA NA NA 

E2F2 E2F2 2007 [65] 69 140 36 3 

E2F4 E2F4 2007 [65] 39 16 NA NA 

ERCC1 ERCC1 2007 [91] NA NA NA NA 

IL7 Interleukin 7 2007 [64] 54 297 82 80 

MET c-Met 2007 [63] NA NA NA NA 

MMP9 MMP-9 2007 [68] 44 86 22 49 

WFDC2 Epididymis protein 4 2009 [76-78] NA NA NA NA 

1A lower number indicates a better rank. 2NA = not available 



Biomedical Hypothesis Generation by Text Mining Protein & Peptide Letters, 2014, Vol. 21, No. 7    7 

ated with survival in breast cancer [113]. The methylation 
status of DAPK1 contributed to stratifying colon cancer pa-
tients into subgroups with different prognosis [114]. The 
correlation between apopototic machinery and DAPK ex-
pression has just recently been validated in the ovarian can-
cer cell line OVCAR-3 [115]. Taken together, DAPK1 might 
be a potent prognostic marker for predicting apoptotic activ-
ity and also tumor progression in various cancer types in-
cluding ovarian cancer.  

 According to literature review by MEDLINE, the remain-
ing top-ten candidate genes, PAX6, E2F6, SMARCB1 and 
PAX5 also regulate gene transcription, while SOCS3, RAF1 
and P18INK4C play a role in signal transduction pathways. 
In summary, the identified genes modulate key elements of 
molecular pathways of tumorigenesis and have already been 
associated with the progression in various malignancies. 

 While the identification of these genes provides valida-
tion for the proposed methodology, we must emphasize the 
overall goal of our study: to provide a framework for future 
text mining approaches. Thus, the suggested pathway can be 
used for other diseases and for other databases as well. 

6. CONCLUSIONS 

 Capturing information from heterogeneous data is one of 
the key problems of literature-based hypothesis generation. 
The strategy presented here is based on guiding the open 
knowledge discovery process by a standardized gene/protein 
nomenclature as well as by improving the ranking using 
gene-prioritization techniques. The results suggest that this 
combined strategy can enhance the efficiency of state-of-the-
art methods for the literature-based discovery. We found that 
this strategy makes biologically meaningful candidate hy-
potheses i.e. the genes/proteins suggested as potential ovar-
ian cancer biomarkers are known to be associated with vari-
ous cancer-related mechanisms. Among them, the RUNX2 
transcription factor, the DAPK1 tumor suppressor and the 
BCL6 transcription factor were identified as the most fre-

quent genes extracted from literature abstracts related to the 
ovarian cancer biomarker genes. 
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