Introduction to Bioinformatics

One semester, 2 hours lectures 2 hours practicals per week. 2 midterm test, Oral or written exam.

Lectures

1) Introduction to bioinformatics

basic concepts, importance, interdisciplinary, core data-types

2) Molecular biology primer

DNA, gene, replication, transcription, translation, regulation, proteins

3) Algorithms and core operations

Algorithm analysis, representation, comparison, dotplots

4) Databases in bioinformatics

Database types, usage, file formats, NCBI, UniProt, Protein DataBase

5) Pairwise alignments

Edit distance, substitution matrix, significance of score, exhaustive/heuristic, global/local

6) Multiple alignments

Dinamic programming, progressive algorithm, scoring

7) Phylogenetics

Phylogenetic tree, terms, representation, tree building methods

8) Profile based methods

Multiple alignments in practice, regular expressions, Hidden Markov Models

9) Similarity search

Principles, heuristic search, FASTA, BLAST

10) The protein universe

Classification, protein groups, ranking based methods, class-annotated databases, clustering

11) Next-generation sequencing

Common aspects, steps of NGS, data store and analysis

Practical sessions

Introduction to Perl and Python

Programming Modules for bioinformatics

Dynamic programming

Software in bioinformatics: ClustalW, hmmer, JalView, BLAST, Phylip

Introduction to database searching

Algorithm Practice: Clustering, UPGMA